Modular electrical systems get standardized

Modular electrical systems can achieve product variety through combinations of standardized components.


The use of modular components is nothing new to the mission-critical industry. For years, we have been building systems out of individual identical components, such as paralleling generators and UPS modules to create system capacity or redundancy. For example, as systems have grown larger, we have been required to replicate them to achieve the total capacity or the redundancy to meet the project requirements. Many times an engineer takes on an unnecessary risk when working on a new project thinking he or she has an obligation to create an entirely new topology when, in fact, the engineer may have been hired because of the success of past designs.

I believe strongly in keeping things simple. Unless I’m directed otherwise, I have an obligation to my clients to give them the benefit of my experience to make their systems reliable, cost-effective, simple to operate, and easy to maintain. My clients should feel comfortable with their systems and be able to understand how and why things operate the way they do. I do not want them to be apprehensive because they don’t understand the system or they feel it is overly complex. I believe that the way to achieve these goals is to use combinations or arrangements of standard components that I know are simple, reliable, and understandable for clients, and that will do the job.

While it is fun and challenging to come up with new designs using the latest components and creations from any number of different manufacturers, the exposure we have as the creative engineering force behind the design is enormous. In these situations, we all stay up late at night (or even wake up in the middle of the night) obsessing over every possible “what if.” In the end, we usually find the new configuration failed because there were component interactions we had no way of predicting, or there were undiscovered fatal flaws in equipment.

Trailblazing is never easy. When we decide to make the recommendation to a client to use new components that have few, if any, operational years (or even hours) of reliable service history behind them, we are placing our reputations in the hands of faceless and nameless equipment designers who will be of little help should the system drop the load.

Now, I am not suggesting that all is lost or that we should all simply give up and stay home next week. What I am suggesting is that it is perfectly acceptable to take the “if it ain’t broke, don’t fix it” approach to our designs. If you have come across a configuration of components that is reliable, simple, and that can be adapted to alternate topologies then, by all means, stick with your proven concept.

Data centers

Years ago, data centers were purpose-built facilities designed and constructed to meet the specific needs of a client. We did not think of the design as being modular, even though we would replicate individual systems topologies side by side to meet the capacity and redundancy requirements of the project. When raised-floor space became a saleable commodity, the concept of replicating facilities in city after city across America and around the world took off. Different sites had different requirements depending on the size of the facility or the concentration of Internet-savvy entrepreneurs in the area. We began referring to sites as “3+1” or “4+1” locations. We were, of course, referring to the number of primary and reserve or redundant systems for the sites. But more importantly, the topology had become a combination of standardized components arranged in a standardized fashion. Our designs were modular, and each site did not have a specific custom box of parts.

The standardization of components and topologies allowed us to run a set of calculations on the availability or reliability of our systems. We were able to create, use, and reuse the same system-commissioning documents. Our wiring diagrams and interconnection details became standard and, more importantly, our clients knew in advance what they were getting. They knew how the system would work and how to optimize system performance. In terms of optimizing the design, we were able to adjust equipment sizes and eliminate multiple contingency allowances. Optimizing performance meant optimizing the cost model. Our goal was to be efficient on every front—in the use of space, energy, construction time, and capital funds.


For us as designers, the goal moving forward is to come up with our own modular designs that can be adapted easily to achieve different topologies to meet different client needs. The three simple single lines shown as Figures 1, 2, and 3 are examples of this concept. The basic topology is a single utility source and generator supplying a main bus. Each main bus in turn supplies both UPS and essential support loads. This building block (or module) is the same in each figure.

Once we have established a modular design that can be adapted to different infrastructure designs, we can move toward both the standardization and optimization of components. The standardization of components would involve working the specifications with selected vendors to establish a foundation for consistent, reliable performance. The specification needs to establish minimum component quality and performance, yet remain open and flexible enough to allow multiple acceptable offerings. Each vendor should be able to provide meantime between failures (MTBF) and meantime to recovery (MTTR) numbers for its products, which will allow you to create a matrix of availability calculations based on the various vendor combinations. Cross-referencing availability with cost may allow you to determine the preferred combination of components that creates the best value proposition for your specific design.

Perhaps the biggest area for optimization that I see is in the mechanical cooling strategies currently being employed. Current configurations incorporate cooling with direct exchange (DX) units, with air-cooled chillers, with water-cooled chillers, with outside air and water spray, or perhaps water-cooled cabinets. Different distribution configurations may present different loss profiles, which, in turn, will influence the net output capacity of a given UPS selection. Each of these options presents a different demand for power that alters the critical capacity for a given utility and diesel combination.

With a little time, effort, creativity, and some computer skills you can create a matrix, or several versions of the same matrix, with different variables to potentially help you and your client select the most cost-effective configuration for a critical application. The key, however, before creating any type of matrix to determine the optimum solution for the problem, is to create a simple, robust, cost-effective modular design that can be applied to a variety of system topologies. Your design should use standard, reliable, readily available components. Once the design is in place, applying a consistent methodology of calculating system availability may help you to revise, modify, and improve the design of your modular infrastructure concept.

Cupertino Electric Inc.Cupertino Electric Inc.Cupertino Electric Inc.

Bergthold is senior vice president and chief technology officer of Cupertino Electric Inc. He is a licensed engineer and is registered to practice electrical engineering in 13 states. Bergthold is a member of IEEE and represents Cupertino Electric in the International Assn. of Electrical Inspectors, the 7x24 Exchange, AFCOM, the Assn. of Facilities Engineers, and the Uptime Institute.

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.