Minimizing the effect of grounding transients on electronic equipment


Electronic systems in manufacturing such as PLCs, CNCs, industrial grade computers, electronic pressure and temperature controls, electronic transmitters, commercial servers and computers have advanced in speed and reduced in physical size. Electronic chip makers integrate more and more circuits on one chip, enabling software manufacturers to increase the density and complexity of programming. The result is higher operating speeds and lower tolerance to damaging electrical interference. The design focus of today’s manufacturing control-system power supplies (ac power converter, which supplies dc system power) is high efficiency and the smallest possible size. However, impulse immunity is not a prominent design constraint.


Most industrial facilities use either a three-phase service classified as a “four-wire grounded” or a “three-wire ungrounded” system. Both grounded and ungrounded electrical systems are required to be connected to earth via the building grounding electrode system. This practice is referred to as grounding or “earthing” for safety. In grounded electrical systems, one of the current-carrying conductors is solidly grounded to the building grounding electrode system, providing a reference to earth. In an ungrounded electrical system, no circuit conductors are connected to ground. However, both grounded and ungrounded building electrical systems require a grounding electrode conductor to reference the electrical power system to the building grounding electrode system which consists of building steel, metal water pipes, buried ground rods and rings. The purpose of these ground electrodes is to provide a low-impedance path to earth for lightning surge current and to reference the building electrical system to its surroundings.

In addition to service grounding, electrical equipment must have an equipment ground to serve two purposes. First, it must provide a permanent, low-impedance path to carry fault current from the point of a ground fault back to the power source. When this happens, it facilitates operation of the protective circuit breaker or other circuit overcurrent device, which disconnects the circuit and removes the hazard of electrocution and fire. A ground fault is defined as “an unintended electrical connection between an ungrounded hot conductor and any metal conductive part of an enclosure or equipment.” The second purpose of the ground is to transfer unwanted electrical noise/energy that is created during standard operation of electrical/electronic equipment from the device to the common safety ground of the building.

The vulnerabilities of grounding

These grounding points within the service building electrical system and inside the electrical equipment create paths for either externally (lightning, utility switching) or internally (electrical noise/energy that is created during standard operation of electrical/electronic equipment) generated ground transients to find a way into the logic

To contact Peter Beno,Vice President of PVA Corp. :

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Safer human-robot collaboration; 2017 Maintenance Survey; Digital Training; Converting your lighting system
IIoT grows up; Six ways to lower IIoT costs; Six mobile safety strategies; 2017 Salary Survey
2016 Top Plant; 2016 Best Practices on manufacturing progress, efficiency, safety
Future of oil and gas projects; Reservoir models; The importance of SCADA to oil and gas
Big Data and bigger solutions; Tablet technologies; SCADA developments
SCADA at the junction, Managing risk through maintenance, Moving at the speed of data
What controller fits your application; Permanent magnet motors; Chemical manufacturer tames alarm management; Taking steps in a new direction
Commissioning electrical systems; Designing emergency and standby generator systems; Paralleling switchgear generator systems
Package boilers; Natural gas infrared heating; Thermal treasure; Standby generation; Natural gas supports green efforts

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Motion control advances and solutions can help with machine control, automated control on assembly lines, integration of robotics and automation, and machine safety.
This article collection contains several articles on preventing compressed air leaks and centrifugal air compressor basics and best practices for the "fifth utility" in manufacturing plants.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
click me