Michigan Technological University Great Lakes Research Center

New construction: Michigan Technological University Great Lakes Research Center; Fishbeck, Thompson, Carr and Huber Inc. (FTC+H)

08/09/2012


Great Lakes Research CenterProject name: Michigan Technological University Great Lakes Research Center

Location: Houghton, Mich.

Firm name: Fishbeck, Thompson, Carr and Huber Inc. (FTC+H)

Project type, building type: New construction, school (college, university)

Project duration: 3 years

Project completion date: May 1, 2012

Project budget for mechanical, electrical, plumbing, fire protection engineering only: $9 million

Engineering challenges

Michigan Technical University (MTU) wanted a new campus facility to house aquatic research laboratories and classrooms, and support researchers and students working with Great Lakes biological, Top viewchemical, and physical studies. The facility needed to be designed and equipped in support of instruction, experimental laboratories, and outreach efforts. The research center is a 55,000-sq-ft, multistory research laboratory facility. The three-story laboratory block (plus service basement and penthouse) is surrounded by offices, conference rooms, and other support spaces. A 100-seat meeting room, connected to a large pre-function space and public lobby overlooking the water, provides attractive meeting space for outreach to students and the community. Dedicated space is located at the main level to house the significant computer resources necessary for the complex research functions. An attached building and marina provide off-season storage and maintenance of university research boats, as well as docking for loading and unloading the boats.

The project site is small and bordered by a campus road and ground-level utility structures on two sides, and a major waterway on the other two sides; imposing constraints that challenged the building placement and accommodation of the necessary site access. Compounding these challenges were the needs to provide access to the water, yet provide a front building entrance from a higher grade Site (Click to enlarge)than the water.

Solutions

As the first research and academic building in this preexisting service area of campus, the building needed to blend with campus architecture, speak to its function, stand adjacent to the utility and service buildings, create a new waterfront face of campus, and lay the groundwork for future academic development in this campus area, all in a part of Michigan famous for its cold climate and snow. The site plan creatively circulates traffic and raises the building’s main level in a successful compromise between ground floor height and barrier-free access to the main entrance.

The building envelope utilizes combinations of brick, cast stone, metal panel, and blue-tinted curtain wall in straight and curved lines to provide an attractive visual bridge between existing academic and service building architecture, while reinforcing the functional connection to the water. High-performance glazing, insulated metal Waterfront (Click to enlarge)panels, and spray-applied wall insulation comprise the energy-efficient envelope. The mechanical design for the facility utilizes a unique system that draws hot water from a heat exchanger/economizer placed in a boiler stack of the nearby campus central heating plant. This heat, which would otherwise be wasted in the boiler stack, is utilized for the majority of heating equipment in the building. Boilers provided higher temperature water for radiant floor heating in selected areas. The design included the addition of a university data center to the project. The data center will house servers that provide system redundancy to the university, as well as high-powered research computing for the facility, in a configuration permitting future upgrades to a Tier 3 design.

State funding requirements required adherence to minimum building floor area efficiencies, whereas the university’s desire for design flexibility tended to add service space. The building’s computer center also demanded a significant amount of support space to maintain tight operating temperature ranges year-round. The building floor plans successfully balance all those needs and accommodating features, such as a central laboratory service shaft, enabling the university to adapt the building to changing research needs. FTC+H also developed the programming statement and schematic design package for submittal to the State of Michigan as part of the state funding of the project, through the Capital Outlay program.

Additional Information 

View a presentation from FTC+H on the project



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
2016 Product of the Year; Diagnose bearing failures; Asset performance management; Testing dust collector performance measures
Safety for 18 years, warehouse maintenance tips, Ethernet and the IIoT, GAMS 2016 recap
2016 Engineering Leaders Under 40; Future vision: Where is manufacturing headed?; Electrical distribution, redefined
SCADA at the junction, Managing risk through maintenance, Moving at the speed of data
Safety at every angle, Big Data's impact on operations, bridging the skills gap
The digital oilfield: Utilizing Big Data can yield big savings; Virtualization a real solution; Tracking SIS performance
Applying network redundancy; Overcoming loop tuning challenges; PID control and networks
Driving motor efficiency; Preventing arc flash in mission critical facilities; Integrating alternative power and existing electrical systems
Package boilers; Natural gas infrared heating; Thermal treasure; Standby generation; Natural gas supports green efforts

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role of plant safety and offers advice on best practices.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me