Mechatronics: Electromechanical manufacturing systems

A tightly integrated mechatronic system can reduce the machine footprint, shorten programming time, and eliminate dedicated hardware controllers.

05/13/2013


Beckhoff Automation showed its XTS (eXtended Transport System), an example of mechatronics design, at PackExpo, in Chicago, October 2012. CFE Media image by Mark T. HoskeAutomation architectures can use one controller, one network, and one software platform across one system architecture. Such a design can integrate a programmable logic controller (PLC), motion control, safety, communications, and robotics on an industrial PC (IPC) or embedded PC. With this approach, users can replace multiple expensive controllers and “black box” hardware with a more powerful centralized system. For machine and robot builders, this means engineering cost savings with process optimizations, and a significantly smaller footprint on the plant floor.

A key driving force for a unified architecture is a modern multi-core processor technology. As multi-core technology progresses, so too does the capability to add even more functionality. The rise of more integrated automation systems has also produced some very interesting innovations in the area of mechatronics.

Mechatronics demonstration

A modular linear drive that serves as a motion control system is exactly the kind of mechatronic advancement that takes full advantage of more powerful PC-based controllers and one architecture. A machine equipped with such a motion control system would leverage one standard controls architecture (PC-based control), one software platform, and one industrial Ethernet network.

By combining linear motor technology on a continuous motion track with straight and curved track segments, a machine designer can configure topologies that suit numerous applications. Typically, a linear motion system has a linear magnetic track and one active carrier. Motion is constrained to back-and-forth actions on one plane. A modular track, on the other hand, is like an inverse linear motor and is specially engineered for multiple carriers. The track contains the active coils and encoding, while each mover is composed of a passive set of magnets with encoder flag and roller wheels. The simple design delivers outstanding performance. Mechanically driven continuous motion, such as from belts or chains, is out-performed by the modular linear motion system since each mover’s position is controlled individually and can be adjusted with great precision on the fly. Movers can have positioning accuracies of +/-25 µm at 1.5 m/s and a positioning repeatability of less than 10 µm at mover standstill.

Control software can abstract complex underlying control principles, to enable a controls engineer to program against the movers’ absolute position. This means movers are positioned using the same software function blocks as traditional rotary axes. Complex motion tasks are relatively easy to implement, such as electronic gearing and computer-aided motion (CAM) tables between movers or between the movers and external axes like those found on conveyors.

Integrated motion, robotics

Circling back to robotics, it is also possible to pair a full robot system with the mover solution and have the automation software run on one industrial PC. This was demonstrated at Hannover Fair 2013, integrating a delta-style robot performing pick-and-place actions coordinated with the movers at high speed. This PC-based mechatronics approach can streamline automation systems for assembly and material handling applications.

Overall, such a mover system represents a highly efficient way for machine builders and manufacturers to integrate a high-performance mechatronic solution into designs that leverage the same controller, the same software environment, and the same network as the other automation and controls equipment on the machine. A tightly integrated mechatronic system can go a long way for engineers to reduce the machine footprint, shorten programming time, and eliminate dedicated hardware controllers.

- Matt Lecheler is motion specialist at Beckhoff Automation. Edited by Mark T. Hoske, content manager, CFE Media, Control Engineering, mhoske(at)cfemedia.com.

ONLINE

Read "Products use mechatronic design for manufacturing systems" below.

www.beckhoffautomation.com/xts 

Beckhoff Automation YouTube video of the XTS at 2013 Hannover Fair (about 30 sec into the video)



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Leaders Under 40 program features outstanding young people who are making a difference in manufacturing. View the 2013 Leaders here.
The new control room: It's got all the bells and whistles - and alarms, too; Remote maintenance; Specifying VFDs
2014 forecast issue: To serve and to manufacture - Veterans will bring skill and discipline to the plant floor if we can find a way to get them there.
2013 Top Plant: Lincoln Electric Company, Cleveland, Ohio
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Bring focus to PLC programming: 5 things to avoid in putting your system together; Managing the DCS upgrade; PLM upgrade: a step-by-step approach
Balancing the bagging triangle; PID tuning improves process efficiency; Standardizing control room HMIs
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.