Mechatronics adds machine safety

Integrated machine safety: The study of mechatronics includes mechanical engineering, electrical engineering, telecommunication engineering, control engineering, and computer engineering. Original equipment manufacturers need to manage the design process, integrate safety, and recognize mechatronic trends to stay ahead of the technology curve.

02/17/2014


Mechatronics-based design can integrate machine safety with favorable results. Articles and images courtesy of Grantek Systems Integration Corp. (upper left), Lenze Americas (upper right), Sick Inc. (lower left), and AutomationDirect explain how.Mechatronics is the convergence of power, electronics, and mechanical systems, including embedded software and hardware in engineering design. Adding safety engineering to mechatronics design theory could have a large economic impact on manufacturers globally.

By developing a portfolio of mechanical, electrical, and software modules, it becomes easier to quickly assemble “custom” machines to meet customer requests.

Proper application of safety standards is required to attain CE Marking, vital for machines placed in Europe. See the five steps to self certification, easier when safety is integrated in machine design.

In applications where single-function relays aren’t capable enough and a safety-rated PLC is overkill, multi-function safety relays can be the best technology choice. Tables provide examples.

Integrate safety engineering into mechatronic design

Mechatronics is a nontraditional field of engineering that combines a variety of cross-disciplinary design principles. The end result is to optimize functionality by creating a simpler, less expensive, more reliable, and safer machine. Most approaches to mechatronics include mechanical engineering, electrical engineering, telecommunication engineering, control engineering, and computer engineering. What about adding a less obvious discipline: safety engineering? This addition to mechatronics design theory could arguably have the largest economic impact on manufacturers around the world. Traditionally there have been two opposing views toward machine safety design: build safety into the design up front or add safety to the machine afterward. Since these arguments were usually financially driven, most machine builders and manufactures alike adopted the notion of “Let’s just add safety to the machine after we design how it works.” Even when fined or when there is an unfortunate accident, most organizations address the problem only by “adding more safeguards” as opposed to instituting a philosophical change by adding safety to the machine/manufacturing design process. It has been a difficult challenge for organizations to justify how adding the cost of safety into an initial machine design created any positive financial impacts on production or even increased overall safety. Why is this? Read more, clicking on the headline above this paragraph or on the article link at the bottom.

Top-down strategies innovate mechatronic machine engineering

Mechatronics is the interdisciplinary collaboration of power, electronics, and mechanical systems, including embedded software and hardware—or, more simply stated, the convergence of engineering disciplines. Mechatronic engineering improves component integration, yielding smaller machines that perform better and cost less to build and support. Developing a mechatronic team demands top-down strategies and a synergistic view of engineering design tools, drive systems, and control design. Mechatronics reduces inefficiency, errors, and unnecessary expense by breaking down traditional engineering silos. At project onset using a mechatronic approach, electrical, mechanical, and software engineers address the actual product a customer wants to handle. They discuss the operations, or motions, required to form and handle the product, then make recommendations on how best to perform the operations. How? Read more, clicking on the headline above this paragraph or on the article link at the bottom.

The increasing role of functional safety in complex machine design

One of the biggest challenges facing U.S. machine builders is the transition from the old safety standard EN954-1 to the new ISO 13849-1 or IEC 61061 safety standards. Proving conformity with these safety standards helps a machine builder obtain a CE Mark, required for placing machines in Europe. Achieving a CE Mark need not be difficult if the right steps are taken. The new standards are used to demonstrate conformity to the European Machinery Directive 2006/42/EC for safety-related parts of a control system (SRP/CS). This functional safety approach to machine design is a necessary response to the changing complexity of automation and the increasing role of new software-based controllers in carrying out integrated safety functions. While the task of designing the safety control system has become a bit more complicated, functional safety offers a more flexible method to design the SRP/CS and to mitigate hazards with safety functions. Although the use of functional safety concepts has its origins in the process control industry, this approach for machinery-specific implementation is gaining momentum with machine builders. Why? Read more, clicking on the headline above this paragraph or on the article link at the bottom.

When to use multi-function safety relays

Many machines and robots require safety circuits to stop all or part of an operation in the event of an emergency event. Safety circuits are also used to keep all or part of a machine or robot from running while there is human activity in close proximity, for either normal operations or maintenance. These safety circuits are typically configured using safety relays, or a safety-rated programmable logic controller (PLC) or other safety-rated controller. But in many cases, multi-function safety relays are a better option. A multi-function safety relay is a configurable device with multiple inputs and outputs. It’s more powerful than a single-function safety relay, and less complex and expensive than a safety-rated PLC. Learn when to use what kind of relay, with significant quantified benefits. Read more, clicking on the headline above this paragraph or on the article link at the bottom.

- Edited by Mark T. Hoske, content manager, CFE Media, Control Engineering, mhoske@cfemedia.com.

ONLINE

See more information and images for the four mechatronics and machine safety articles linked at the bottom.

Also, the Control Engineering Machine Safety blog provides additional guidance on safety integration



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
2016 Product of the Year; Diagnose bearing failures; Asset performance management; Testing dust collector performance measures
Safety for 18 years, warehouse maintenance tips, Ethernet and the IIoT, GAMS 2016 recap
2016 Engineering Leaders Under 40; Future vision: Where is manufacturing headed?; Electrical distribution, redefined
SCADA at the junction, Managing risk through maintenance, Moving at the speed of data
Safety at every angle, Big Data's impact on operations, bridging the skills gap
The digital oilfield: Utilizing Big Data can yield big savings; Virtualization a real solution; Tracking SIS performance
Applying network redundancy; Overcoming loop tuning challenges; PID control and networks
Driving motor efficiency; Preventing arc flash in mission critical facilities; Integrating alternative power and existing electrical systems
Package boilers; Natural gas infrared heating; Thermal treasure; Standby generation; Natural gas supports green efforts

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role of plant safety and offers advice on best practices.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me