Machine safety risk level assessment priority: Possibility, severity, or frequency?

Which factor has the highest priority for assessing hazard risk levels: possibility, severity, or frequency? The ANSI B11.0 – 2010 standard may help.

12/07/2012


Are the three factors of possibility, severity, and frequency of equal importance in determining the risk levels for machine safety hazards? Industry safety standards seem to treat them as equal because they don’t address any relative importance. However, what’s your experience?

Doesn’t it seem that both international and domestic standards present these three required factors for assessing risk as independent variables? Although they’re independent, they are also related because when they’re combined they help to determine risk levels of hazards and their related remediation performance requirements. This is shown in the following graph from ANSI B11.0 – 2010. In this case the qualitative process is determining the Performance Level (PL) for the given hazard. 

Using this assessment approach, if you decided that severity (of injury) required a higher priority, would the derived outcome in the risk level be any different? Similarly, would giving the possibility or frequency factors greater priority or lesser priority change the answer? In my opinion, I don’t see it!

Figure D-2: Performance Levels from ISO 13849-1:2006. Reprinted with Permission: ANSI B11.0 – 2010, B11 Standards Inc.

Yet when I talk with users about this issue, they frequently present this example. If severity of harm for a given hazard is “death,” they always give that factor a higher priority (S2) and a higher risk level, which drives the highest circuit performance for machine guarding. The highest circuit performance is PLe, which requires the average probability of dangerous failures per hour of 10-8 to 10-7. PLe means control reliable circuits with redundant components and 24/7 monitoring.

So, here’s the dilemma as I see it: If severity is S2 and frequency and possibility are F1 and P1, respectively, your derived risk level is PLc by ISO 13849-1: 2006 standard requirements. After deciding on S2 and depending on your answers for F1 or F2 and P1 or P2, you could arrive at either PLc, Pld, or PLe, per the graph above. Specifically arriving at PLe by prioritizing severity (S2) is not straightforward. If using the category system, you could likewise arrive at either Cat 1, 2, 3, or 4 by deciding on S2. Perhaps you can prioritize severity by eliminating frequency and possibility and simply defaulting to PLe or Cat 4. But, by eliminating frequency and possibility in your risk analysis, are you in compliance with the standards? Therefore, aren’t all three factors equal in priority?

Does anyone have an answer for this dilemma? Your comments or suggestions are always welcome, so please let us know your thoughts. Submit your ideas, experiences, and challenges on this subject in the comments section below (online).

- J.B. Titus, Certified Functional Safety Expert (CFSE), writes the Control Engineering Machine Safety Blog. Reach him at jb@jbtitus.com; www.jbtitus.com. Edited by Mark T. Hoske, content manager, CFE Media, Control Engineering and Plant Engineering, mhoske@cfemedia.com.

Go Online

www.controleng.com/blogs   

http://www.b11standards.com.

Contact: www.jbtitus.com for “Solutions for Machine Safety.”

See the related posts linked below.



The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
Doubling down on digital manufacturing; Data driving predictive maintenance; Electric motors and generators; Rewarding operational improvement
2017 Lubrication Guide; Software tools; Microgrids and energy strategies; Use robots effectively
Prescriptive maintenance; Hannover Messe 2017 recap; Reduce welding errors
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Research team developing Tesla coil designs; Implementing wireless process sensing
Commissioning electrical systems; Designing emergency and standby generator systems; Paralleling switchgear generator systems
Natural gas engines; New applications for fuel cells; Large engines become more efficient; Extending boiler life

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me