Machine Safety: hazard remediation, mechanical versus control system solutions

What's the residual risk for Cat 3 hazard mitigated by a fixed steel plate? Did the repair result in a control reliable solution? Are physical barriers or control solutions better to reduce risk. Five steps define the hierarchy of measures for hazard mitigation and machine safety risk reduction.


So, for a Cat 3 hazard mitigated by a fixed steel plate, what’s the residual risk? Cat 1? Would that be a control reliable solution? How come we can’t simplify the process for all? In my opinion, all of the machine safety and risk assessment standards approach the risk assessment and risk reduction process as somewhat complex. I’m talking about the entire process for a machine. Including the risk reduction measures to achieve acceptable residual risk for every hazard, mechanical or control system related.


The five steps of the “Hierarchy of Measures” for hazard mitigation begins with design it out:

1.) Eliminate the hazard – design it out

2.) Isolate the hazard with hard guarding

3.) Add additional engineering, guards, devices, or layers of safety

4.) Administrative controls like – training, signage, assessments, etc.

5.) Personal protective equipment (PPE) like - goggles, gloves, outer clothing, shields, etc. 

Arguably, steps 1, 2 and 3 can be focused at the mechanical design of the machine including the application of fixed guards. By now most risk assessment practitioners understand this and that they need to transition to the control system for additional hazard mitigation as needed to reach acceptable risk. Steps 4 and 5 are also considered as acceptable solutions for risk reduction.


However, don’t risk Categories (B, 1, 2, 3 & 4) only apply to the “control system”?  When you check out the Category descriptions you see words like; control reliable, single channel with monitoring, dual channel with monitoring, and more. Does this mean that machine safety hazards, other than those addressable via the control system, are only dangerous or not dangerous? 


When a fixed guard is applied over a hazard the standards say that tamper proof attachment devices should be used to prevent unauthorized persons from removing the guard. Okay, so I guess it’s dangerous or not! On the other hand, by applying a warning sign is the hazard dangerous or not? How do you rate or measure the risk reduction of a warning sign? In one standard hazard levels are described as; high, medium, low and negligible. Will that work for all hazards including the control system? Or, do you still need Categories for the control system? If you still need Categories for the control system how do you transition into and out of Categories during the risk reduction flow process? 


Perhaps the machine safety standards could take a look at covering all of the mechanical, electrical, control systems, and administrative solutions within their section titled something like “Risk Reduction Measures.” Then, there could be obvious transitions during the journey of the risk reduction flow process. I’ve seen many an end user having difficulty with this issue versus an original equipment manufacturer (OEM). But, the OEM isn’t necessarily concerned with this issue because he’s not the target of OSHA and the end user is most always concerned with Steps 4 and 5 of the Hierarchy of Measures.  


Your comments or suggestion are always welcome so please let us know your thoughts. Submit your ideas, experiences, and challenges on this subject in the comments section below. Click on the following text if you don't see a comments box, then scroll down: Machine Safety, hazard remediation, mechanical versus control system solutions.


J.B. Titus, CFSERelated articles:

Machine Safety – does a risk assessment need to be updated for a minor modification to a machine?

Machine Guarding & The Hierarchy of Measures for Hazard Mitigation

Machine Safety – does OSHA reference consensus standards for compliance?

Machine Safety: Is OSHA okay with my 'acceptable' risk mitigation?


Contact: for “Solutions for Machine Safety”.

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
A cool solution: Collaboration, chemistry leads to foundry coat product development; See the 2015 Product of the Year Finalists
Raising the standard: What's new with NFPA 70E; A global view of manufacturing; Maintenance data; Fit bearings properly
Sister act: Building on their father's legacy, a new generation moves Bales Metal Surface Solutions forward; Meet the 2015 Engineering Leaders Under 40
Cyber security cost-efficient for industrial control systems; Extracting full value from operational data; Managing cyber security risks
Drilling for Big Data: Managing the flow of information; Big data drilldown series: Challenge and opportunity; OT to IT: Creating a circle of improvement; Industry loses best workers, again
Pipeline vulnerabilities? Securing hydrocarbon transit; Predictive analytics hit the mainstream; Dirty pipelines decrease flow, production—pig your line; Ensuring pipeline physical and cyber security
Upgrading secondary control systems; Keeping enclosures conditioned; Diagnostics increase equipment uptime; Mechatronics simplifies machine design
Designing positive-energy buildings; Ensuring power quality; Complying with NFPA 110; Minimizing arc flash hazards
Building high availability into industrial computers; Of key metrics and myth busting; The truth about five common VFD myths

Annual Salary Survey

After almost a decade of uncertainty, the confidence of plant floor managers is soaring. Even with a number of challenges and while implementing new technologies, there is a renewed sense of optimism among plant managers about their business and their future.

The respondents to the 2014 Plant Engineering Salary Survey come from throughout the U.S. and serve a variety of industries, but they are uniform in their optimism about manufacturing. This year’s survey found 79% consider manufacturing a secure career. That’s up from 75% in 2013 and significantly higher than the 63% figure when Plant Engineering first started asking that question a decade ago.

Read more: 2014 Salary Survey: Confidence rises amid the challenges

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.