Machine safety compliance: start with design

From ergonomics and e-stops to OSHA and output, here are the essential considerations for machine safety compliance. Safety starts with design.


E-stops (emergency stop buttons) need to be designed to be easily accessible and labeled clearly to allow for a quick shutdown in an out-of-control situation. Courtesy: OptimationAn important first step when considering safety as part of machine design is understanding the scope of what the machine is being designed to deliver. Safety in design is critical to the end products as well as to the machine’s profitability, whether the equipment is designed to deliver compressed air; cuts or forms metal parts; assembles parts; or makes widgets. Safety in design includes an understanding of the machine throughput information (how many parts per hour). Evaluate the complexity or simplicity of the machine’s loading and unloading process (manual or automatic), and in-feed and out-feed requirements (how do raw materials get into the machine and finished parts get out of the machine) during the design phase.

Floor space requirements can best be determined during the design stage as well. Consider the machine footprint, such as how much space is needed for the machine, the operator, material handling machine access (such as forklift, conveyors, etc.), production component marshalling, material storage, access for removing end product components, and packaging materials; and how waste will be handled. What services will be needed to power and operate the machine, such as air, electricity, water, vacuum, etc.? Consider what is needed as well as the source for these services.

Keep ergonomics in mind: machines should be able to be operated by any person. Design adjustable controls to make the machine efficient and user friendly. Courtesy: OptimationInclude ergonomics during the design phase. Adjustable equipment should be able to be operated by any person. Adjustability must be designed into the operator’s panel and input stations allowing for risk-free, user friendly, and efficient operation of the equipment.

One guide for the ergonomics engineering solutions is the book, “Kodak’s Ergonomic Design for People at Work.” There are currently no OSHA or European ISO 18001 standards for ergonomic design, but that doesn’t mean citations cannot be issued by OSHA in the U.S. OSHA will issue citations to companies for poor design via its General Duty Clause, which states the employer must provide a workplace free from recognized hazards. Industrial illnesses caused by repetitive motion, such as carpal tunnel syndrome, are considered recognized hazards by OSHA.

Along with ergonomics, the Americans with Disabilities Act (ADA) must be considered during design. The U.S. Department of Justice’s revised regulations for Titles II and III of the ADA Act of 1990 were published in the Federal Register on Sept. 15, 2010. The Department has assembled an official online version of the 2010 ADA Standards for Accessible Design (2010 Standards) to compile the information in one easy-to-access location. It provides the scoping and technical requirements for new construction and alterations resulting from the adoption of revised 2010 Standards in the final rules for Title II (28 CFR part 35) and Title III (28 CFR part 36).

The Justice department has also compiled guidance on the 2010 standards from the revised regulations for Titles II and III. This explanatory information from the regulations addresses the scoping and technical provisions of the 2010 standards. The new requirements can be found at or within the U.S. Department of Justice Civil Rights Division.

Regulatory considerations

Recognize what it will take for a mechanic to perform service maintenance and repair on your machine. Poor accessibility can lead to extended downtime and potential injuries. Courtesy: OptimationBeyond safe machine design, a health, safety and environmental (HSE) plan is needed. Front-end loading, a thorough planning proactive approach to machine design, can help bring to mind everything that needs to be considered. The HSE plan, if thorough, will raise a high percentage of the safety concerns so these issues can be resolved in the earliest phases. Use the HSE plan to facilitate the construction of the operating facility and help answer questions raised during this phase of engineering as well. HSE plans are not required by OSHA’s 29 CFR 1910 General Industry, 29 CFR 1926 for Construction, nor by ISO 180001. They only require that all hazards be recognized and addressed prior to starting construction and starting equipment.

OSHA provides the requirements for exit routes, emergency action plans (emergency access, egress, exits, and emergency response signage, etc.) and fire prevention plans in Subpart E of 29 CFR 1910.33 through 1910.39. Since safety standards differ by country, designers should consider the country in which the machine will be located and operated. If the machine has running or moving parts that would require guarding, related regulations are spelled out in 29 CFR 1910.211 through 29 CFR 1910.219 Subpart O. All operating hazards must be identified during design so that interlocking guards can be included to protect those who will operate the machine and require access for maintenance activities. Electronic stops (e-stops) also need to be designed and labeled so equipment can be immediately shut down if an out-of-control situation were to occur. OSHA provides direction for lockout/tagout (LOTO) and hazardous energy control in 29 CFR 1910.147 Subpart J.  OSHA requires that new equipment be designed such that personal protective equipment (PPE) would not be required for machine operators to be safe in Subpart I, 29 CFR 1910.132. The standard directs that new equipment shall design out any hazards that could be serious enough to require PPE if at all feasible. It should be noted that feasibility is not necessarily a cost or a convenience issue. Safety standards related to electrical safety are found in Subpart S at 29 CFR 1910.301 through 399.

These standards are examples of OSHA performance standards, which describe what needs to be done to achieve compliance. ISO 18001 provide overarching high-level guidance and does not provide direction on how to perform these types of work.

OSHA isn’t the only standard enforced. Other standard writing organizations documents are referred to and/or incorporated into OSHA regulations. Many of the American National Standards Institute (ANSI) standards, as well as those from the National Fire Protection Association (NFPA), are incorporated by reference into the OSHA standards, which make them enforceable by OSHA. These are only two of many incorporated standards that must be considered during the design phase for machine compliance.

<< First < Previous 1 2 Next > Last >>

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Sister act: Building on their father's legacy, a new generation moves Bales Metal Surface Solutions forward; Meet the 2015 Engineering Leaders Under 40
2015 Mid-Year Report: Manufacturing's newest tool: In a digital age, digits will play a key role in the plant of the future; Ethernet certification; Mitigate harmonics; World class maintenance
2015 Lubrication Guide: Green and gold in lubrication: Environmentally friendly fluids and sealing systems offer a new perspective
Drilling for Big Data: Managing the flow of information; Big data drilldown series: Challenge and opportunity; OT to IT: Creating a circle of improvement; Industry loses best workers, again
Pipeline vulnerabilities? Securing hydrocarbon transit; Predictive analytics hit the mainstream; Dirty pipelines decrease flow, production—pig your line; Ensuring pipeline physical and cyber security
Cyber security attack: The threat is real; Hacking O&G control systems: Understanding the cyber risk; The active cyber defense cycle
Designing positive-energy buildings; Ensuring power quality; Complying with NFPA 110; Minimizing arc flash hazards
Building high availability into industrial computers; Of key metrics and myth busting; The truth about five common VFD myths
New industrial buildings: Greener, cleaner, leaner; New building designs for industry; Take a new look at absorption cooling; Offshored jobs start to come back

Annual Salary Survey

After almost a decade of uncertainty, the confidence of plant floor managers is soaring. Even with a number of challenges and while implementing new technologies, there is a renewed sense of optimism among plant managers about their business and their future.

The respondents to the 2014 Plant Engineering Salary Survey come from throughout the U.S. and serve a variety of industries, but they are uniform in their optimism about manufacturing. This year’s survey found 79% consider manufacturing a secure career. That’s up from 75% in 2013 and significantly higher than the 63% figure when Plant Engineering first started asking that question a decade ago.

Read more: 2014 Salary Survey: Confidence rises amid the challenges

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.