Linear motion: Novel design expands conveyor system flexibility

Movers wrap around the track so they can be oriented horizontally, vertically, or even upside down. The controller treats each carrier as a separate degree of freedom with absolute-encoder feedback. The drive, on the other hand, views each carrier as an N-pole motor, where N is the number of electromagnets in the complete track. See diagram and learn about Siemens and Jacobs Automation collaboration.

11/11/2008


Chicago, IL — Visitors at the Pack Expo 2008 conference and expo saw the results of a collaboration between Siemens Energy and Automation (SEA) and Jacobs Automation (JA) to produce a novel conveyor system, called PackTrak, built on linear motor technology. Material is moved along a curvilinear track on small, magnetized, independently controllable carriers called “movers.” A Siemens Simotion P350 PC-based controller running Linux real-time operating system keeps track of


The PackTrak mover wraps around the track to allow installation in any orientation.

All linear motors operate the same, based on magnetic forces between magnets installed in tracks and in carriers. In the PackTrak system, each carrier incorporates a bar magnet made of neodymium-iron permanent magnet material mounted underneath each mover, and separately energized electromagnet coils built into the track. A roller/guide-rail arrangement provides mechanical forces to support the carriers and keep them running true on the track, while allowing them free movement along it.
To move a carrier, the controller sends commands to a DSP-based drive, which applies current to track electromagnets at the carrier’s location. Depending on the current sense, magnetic forces will push the carrier forward or backward along the track.
The DSP drive knows each carrier’s location through commutation signals provided by a unique encoder system. Sensors built into the track use the giant magnetoresistive (GMR) effect to sense the location of small permanent magnets attached to each mover. The GMR sensors operate in saturation mode, sensing the position-magnet field’s angular orientation at the nearest position sensor. From that angle and knowledge of the track geometry, the drive can calculate the position magnet’s location to a fraction of the distance between sensors. This commutation system provides absolute position encoding, making it unnecessary to “home” the system on power up, even if carriers have moved.
The drive thus can provide appropriate currents to hold each carrier still or move it in a direction at a speed commanded by the controller. The controller treats each carrier as a separate degree of freedom with absolute-encoder feedback. The drive, on the other hand, views each carrier as an N-pole motor, where N is the number of electromagnets in the complete track.
Having the Siemens controller allows the system to interface to the outside world as if it were any other motion-control system. Expanding the number of carriers controlled means expanding the number of degrees of freedom for the system.
Movers wrap around the track so they can be oriented horizontally, vertically, or even upside down. Propulsion magnets mount on both sides of the track, so that magnetic forces in the plane normal to the motion direction are always balanced.
Tracks come in 50 mm segments that can be straight or curved. Each segment includes 24 electromagnets, along with mover position sensors. Adding a segment requires only mechanically fixturing it and plugging in a cable from the drive. Entire conveying systems typically use a closed-circuit track to allow motion in one direction for numerous movers, but open-ended tracks, where carriers move back and forth between ends, are possible as well.
Read other Control Engineering Pack Expo coverage .
Read Packaging Digest Pack Expo coverage .
C.G. Masi , senior editor
Control Engineering
Register here and scroll down to select your choice of eNewsletters free.





No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Strategic outsourcing delivers efficiency; Sleeve bearing clearance; Causes of water hammer; Improve air quality; Maintenance safety; GAMS preview
World-class maintenance: The three keys to success - Deploy people, process and technology; 2016 Lubrication Guide; Why hydraulic systems get hot
Your leaks start here: Take a disciplined approach with your hydraulic system; U.S. presence at Hannover Messe a rousing success
Flexible offshore fire protection; Big Data's impact on operations; Bridging the skills gap; Identifying security risks
The digital oilfield: Utilizing Big Data can yield big savings; Virtualization a real solution; Tracking SIS performance
Getting to the bottom of subsea repairs: Older pipelines need more attention, and operators need a repair strategy; OTC preview; Offshore production difficult - and crucial
Applying network redundancy; Overcoming loop tuning challenges; PID control and networks
Putting COPS into context; Designing medium-voltage electrical systems; Planning and designing resilient, efficient data centers; The nine steps of designing generator fuel systems
Package boilers; Natural gas infrared heating; Thermal treasure; Standby generation; Natural gas supports green efforts

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role that compressed air plays in manufacturing plants.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me