Learn (or review) the difference between MTBF and lifetime

There has been confusion in understanding the difference between mean time between failures (MTBF) and lifetime. A product might have an MTBF of 500,000 hours, but a lifetime expectancy of 20,000 hours. So why is there such a large discrepancy? Puls LP says the answer is easy if you understand...

09/24/2008


St. Charles, IL – There has been confusion in understanding the difference between mean time between failures (MTBF) and lifetime. A product might have an MTBF of 500,000 hours, but a lifetime expectancy of 20,000 hours. So why is there such a large discrepancy? Puls LP says the answer is easy if you understand the difference between the terms, because one does not have anything to do with the other.


Puls explains the difference between MTBF and lifetime.

MTBF represents the statistical approximation of how long a number of units should operate before a failure can be expected. It is expressed in hours and does not represent how long the unit will last. There are many ways of calculating MTBF. Use calculations based on models such as SN 29500, MIL HDBK-217 or Belcore; use field failures, or Field MTBF; or use laboratory testing, or demonstrated MTBF. For instance to test 10,000 units for 1000 hours with 10 failures, the MTBF would be 1 million hours. This does not suggest the unit will operate for 114 years. A better representation would be if 500 units operate at the same time, a failure could be expected every 2,000 hours, or 83 days.
Unlike the hours from the MTBF calculations, lifetime indicates operating hours expected under normal operating conditions. It is the period of time between starting to use the device and the beginning of the wear-out phase. This is determined by the life expectancy of components used in assembly of the unit. The weakest component with the shortest life expectancy determines the life of the whole product. For power supplies, electrolytic capacitors have the shortest lifetime expectancy.
To understand MTBF versus lifetime, think of a product going through three phases over its lifetime. In the first, the failure rate is high and is referred to as the “infant mortality” phase. In the second, the failure rate is low and fairly constant. In the third, the failure rate begins to increase and is called the “wear out” phase. The complete graph is the “bathtub curve” because it looks like one. MTBF is a way of determining how many spare parts you might need to support 500 units, but a poor guide on when those parts should be changed. A unit that operates eight hours a day will last three times longer than a device operating around the clock. However, MTBF is the same because both units receive the same number of hours in service.
Many factors determine reliability. Low failure rate and long life are two. A good quality process control and a high degree of automation during production can lower the defect rate and improve reliability. A rugged design using high-quality components can improve reliability system-wide. Environmental conditions such as vibration and temperature can play a major role in defect rate and reliability. For power supplies, heat is the enemy and can shorten the life of electrolytic capacitors dramatically. The industry rule states that every 10 °C increase in temperature reduces the life of the capacitor by half.
As that relates to products, for instance, Puls uses large-diameter, high-quality capacitors, allowing the Dimension series to have a rated life of at least 50,000 hours. The older Puls SilverLine Series use capacitors rated with a longer life than competitors with current product, the company says.
For more information on mean time between failures and mean time to failure (MTTF), read

How do you determine MTBF

?
–  Control Engineering System Integration eNewsletter
Register here and scroll down to select your choice of eNewsletters free .





No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Hannover Messe 2016: Taking hold of the future - Partner Country status spotlights U.S. manufacturing; Honoring manufacturing excellence: The 2015 Product of the Year Winners
Inside IIoT: How technology, strategy can improve your operation; Dry media or web scrubber?; Six steps to design a PM program
World-class manufacturing: A recipe for success: Finding the right mix for a salad dressing line; 2015 Salary Survey: Manufacturing slump dims enthusiasm
Getting to the bottom of subsea repairs: Older pipelines need more attention, and operators need a repair strategy; OTC preview; Offshore production difficult - and crucial
Digital oilfields: Integrated HMI/SCADA systems enable smarter data acquisition; Real-world impact of simulation; Electric actuator technology prospers in production fields
Special report: U.S. natural gas; LNG transport technologies evolve to meet market demand; Understanding new methane regulations; Predictive maintenance for gas pipeline compressors
Warehouse winter comfort: The HTHV solution; Cooling with natural gas; Plastics industry booming
Managing automation upgrades, retrofits; Making technical, business sense; Ensuring network cyber security
Designing generator systems; Using online commissioning tools; Selective coordination best practices

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role that compressed air plays in manufacturing plants.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
click me