# Learn (or review) the difference between MTBF and lifetime

## There has been confusion in understanding the difference between mean time between failures (MTBF) and lifetime. A product might have an MTBF of 500,000 hours, but a lifetime expectancy of 20,000 hours. So why is there such a large discrepancy? Puls LP says the answer is easy if you understand...

09/24/2008

St. Charles, IL – There has been confusion in understanding the difference between mean time between failures (MTBF) and lifetime. A product might have an MTBF of 500,000 hours, but a lifetime expectancy of 20,000 hours. So why is there such a large discrepancy? Puls LP says the answer is easy if you understand the difference between the terms, because one does not have anything to do with the other.

 Puls explains the difference between MTBF and lifetime.

MTBF represents the statistical approximation of how long a number of units should operate before a failure can be expected. It is expressed in hours and does not represent how long the unit will last. There are many ways of calculating MTBF. Use calculations based on models such as SN 29500, MIL HDBK-217 or Belcore; use field failures, or Field MTBF; or use laboratory testing, or demonstrated MTBF. For instance to test 10,000 units for 1000 hours with 10 failures, the MTBF would be 1 million hours. This does not suggest the unit will operate for 114 years. A better representation would be if 500 units operate at the same time, a failure could be expected every 2,000 hours, or 83 days.
Unlike the hours from the MTBF calculations, lifetime indicates operating hours expected under normal operating conditions. It is the period of time between starting to use the device and the beginning of the wear-out phase. This is determined by the life expectancy of components used in assembly of the unit. The weakest component with the shortest life expectancy determines the life of the whole product. For power supplies, electrolytic capacitors have the shortest lifetime expectancy.
To understand MTBF versus lifetime, think of a product going through three phases over its lifetime. In the first, the failure rate is high and is referred to as the “infant mortality” phase. In the second, the failure rate is low and fairly constant. In the third, the failure rate begins to increase and is called the “wear out” phase. The complete graph is the “bathtub curve” because it looks like one. MTBF is a way of determining how many spare parts you might need to support 500 units, but a poor guide on when those parts should be changed. A unit that operates eight hours a day will last three times longer than a device operating around the clock. However, MTBF is the same because both units receive the same number of hours in service.
Many factors determine reliability. Low failure rate and long life are two. A good quality process control and a high degree of automation during production can lower the defect rate and improve reliability. A rugged design using high-quality components can improve reliability system-wide. Environmental conditions such as vibration and temperature can play a major role in defect rate and reliability. For power supplies, heat is the enemy and can shorten the life of electrolytic capacitors dramatically. The industry rule states that every 10 °C increase in temperature reduces the life of the capacitor by half.
As that relates to products, for instance, Puls uses large-diameter, high-quality capacitors, allowing the Dimension series to have a rated life of at least 50,000 hours. The older Puls SilverLine Series use capacitors rated with a longer life than competitors with current product, the company says.

?
–  Control Engineering System Integration eNewsletter
Register here and scroll down to select your choice of eNewsletters free .

The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
2017 Lubrication Guide; Software tools; Microgrids and energy strategies; Use robots effectively
Prescriptive maintenance; Hannover Messe 2017 recap; Reduce welding errors
Safety standards and electrical test instruments; Product of the Year winners; Easy and safe electrical design
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Future of oil and gas projects; Reservoir models; The importance of SCADA to oil and gas
Diagnostic functions for system safety; Specifying industrial enclosures; Effective decision support for a crisis
Transformers; Electrical system design; Selecting and sizing transformers; Grounded and ungrounded system design, Paralleling generator systems
Natural gas for tomorrow's fleets; Colleges and universities moving to CHP; Power and steam and frozen foods

### Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.