ISA88 Part 5 draft: Traditional automation designs for batch recipes

A series of discussions follow seeking input on possible language in ISA88 Part 5 draft standard, Figures 1-6 follow. Please provide comments at the bottom of this posting to ensure the standard is understandable, appropriate, and useful across industries and areas of control, machine control, batch control, and continuous control, as well as flexible and scalable, across hybrid applications.

04/30/2011


A series of discussions follow seeking input on possible language in ISA88 Part 5 draft standard, Figures 1-5 follow. Please provide comments at the bottom of this posting to ensure the standard is understandable, appropriate, and useful across industries and areas of control, machine control, batch control, and continuous control, as well as flexible and scalable, across hybrid applications.

Traditional

     To help in understanding the focus of Part 5 it is beneficial to discuss some of the dominate traditional approaches used to design, develop and deliver automation used to support ISA 88 batch recipes. The following discussion points provide insight into many of the different traditional approaches used in delivery of ISA 88 modular systems and contrasts those approaches with the recommendations of Part 5.

  • Traditional Equipment and Control Modules are custom engineered composites of automation components designed to meet the requirements of a functional strategy (FS) as represented in...

Figure 1: Traditional Automation Module.

Figure 1: Traditional Automation Module, ISA88 Part 5, draft

  • A functional strategy may consist of a totally custom design and implementation or it may utilize components provided by the suppliers of the automation control equipment as represented in Figure 2, which uses a function block provided by a vendor to implement a motor starter. The IEC 61915-2 specification provides methods to interact with function block described as part of that standard and can significantly reduce the amount of custom effort required to implement a FS. As indicated in Figure 2 there is generally additional functionality required to deliver the FS than is provided by the function blocks and the engineer must add that functionality and the methods to interact with the FS of that module. Often the methods and interfaces provide by the function blocks are not appropriate for general use and as part of the additional functionality the module must manage what is exposed and mange interaction with the components used to deliver the FS.

Example of some additional functionality: Simulation, management of permissives and interlocks, ability to bypass the function block and manipulate the outputs directly (Part 1 Automatic and Manual Mode), initialization functionality, alarm management, etc.

Figure 2: FS using vendor supplied function block

Figure 2: Functional strategy using vendor supplied function block, ISA88 Part 5 draft

  • Traditional modules may contain clearly defined methods that allow them to be commanded and controlled from an external source to carry out the functional strategy as represented in Figure 3. In some instances the interactions are obscure and require deep understanding of the FS implementation to be able to interact with it as indicated in Figure 4.

Figure 3: Clearly defined command and control

Figure 3: Clearly defined command and control, ISA88 Part 5 draft

Figure 4: Obscure command and control

Figure 4: Obscure command and control, ISA88 Part 5 draft

  • Command and control encompasses all the external interfaces, data in, status and data out, and commands to activate or change states and behavior as indicated in Figure 5: Command and Control Interfaces.

Figure 5: Command and Control Interfaces

Figure 5: Command and Control Interfaces, ISA88 Part 5 draft

  • These command and control methods are generally custom and are generally deep within the custom automation and require detailed understanding of the FS and the implementation to successfully interact with the module.

     Next post will discuss Figures 6-12.

     Comments? Questions? Suggestions? Please add them below. Cannot see the comment boxes? Click here and scroll down.



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.