IO module replacement: What you need to know

When upgrading processors, do I/O modules also need replacing? Many processor brands will communicate with legacy I/O systems and provide most or all functionality of modern control platforms. This may not be the case if changing processor brands, according to this system integrator.


Before: Old control panels make troubleshooting and maintenance very difficult and time-consuming, in addition to posing problems with downtime and potential safety issues. Shown is an old control panel with dated hardware and hardwired pneumatic solenoidIf your facility needs the features and added functionality of that new processor family, first determine if you need to replace the I/O modules. Many processor brands will communicate with legacy I/O systems and still allow most if not all the functionality of more modern control platforms. This may not be the case if changing processor brands.

Assuming it is time to replace the I/O system, there are several factors you need to consider when planning this activity. First and foremost is facility operation while this upgrade is occurring. What types of downtime windows are available for the cut-over? Does part of the old I/O system need to stay operational while the new system is being installed? Can the field wiring remain intact, or does that need replacement as well? Are you reprogramming the new processor as part of this upgrade?

How much I/O at a time

The old panel was replaced with a new panel, including Ethernet-networked pneumatic solenoids and a distributed Ethernet-based flexible I/O module. Courtesy: TriCoreThe downtime window will drive how much I/O can be replaced at one time. It will always be easiest to replace complete I/O enclosures at one time, if enough time exists. There are a couple of things that can be done to reduce the amount of cutover time for the new I/O system.

A new panel replaced the old one, including new level switches, as well as proper circuit protection, fusing, device labels, wire labels, and terminals. It also shows a distributed Ethernet-based flexible I/O module. Courtesy: TriCoreIf the field wiring remains intact, new panel sub-plates can be pre-assembled and prewired to new terminal strips. When the downtime window occurs, disconnect the field side of the terminals on the old sub-plate; completely remove the old sub-plate; install the new sub-plate; and reconnect the field wiring sides of the new sub-plates. This approach may require installing new sub-plate mounting studs in the existing enclosure.

Before: Users typically end up with a mess when legacy PLC system modules have been rewired and “made to work” over time. Legacy systems that have outlived their functional lifespan often turn into maintenance and replacement parts headaches. Courtesy: TrIf changing sub-plates is not an option, ensure the new I/O platform physically fits on the old sub-plate (this is usually the case as I/O systems tend to get physically smaller over time), then remove, mount, and rewire the new I/O system on the existing sub-plate. In this case, keep the field side of the terminal strip intact. To save time you could consider prewiring and tagging the I/O module swing arm in advance (if your I/O module supports this).

I/O replacement time savings

When field wiring needs to be replaced, there are more challenges but also some opportunities. Wire can be prepulled, tagged, and spooled on both ends (field device side and new panel side) allowing for a faster cut-in.

Having portions of an existing I/O system remain intact while newer portions come online is the most challenging. This will require new wiring in most cases and parallel operations of old and new systems. For daisy chained devices using a common power supply, try to keep the entire loop intact on one system or the other if at all possible; this will simplify your life.

New replacement panel includes new regulators, in addition to Ethernet-based flexible I/O modules. Courtesy: TriCoreWhere individual instrumentation input signals need to be shared between both systems, there are generally a couple of options available. Having signals networked between the old and new systems will be the simplest solution from a wiring standpoint, and there will be no loss of signal fidelity, but specialty communication modules may be required. For certain critical or high-speed parameters, this approach may not suffice. In that case you will need to pick one system to control and measure, and have the other request and/or monitor these results.

Dual system control

For output devices that need to be controlled from both systems, there are a couple of options to consider, depending on the device type.

Networking between the old and new systems is one common option. One system would physically control the device; the other would request activation or deactivation of the device. This is the most secure method of operation and the easiest to troubleshoot should problems occur during the transition process. This works well for both digital and analog devices.

If networking is not an option, interposing relays with dual contacts can be used to allow both systems to simultaneously control one digital output device, but care must be taken with this approach. If either system requests the device, it will unconditionally activate unless otherwise interlocked. If wired and designed properly, when the cutover is complete, the old system can be disconnected from the relay, the relay coil can be removed (a point of failure), and the relay base simply exists as a terminal block between the I/O module and field device in the new system.

New panel replaced the old panel, including an Ethernet switch. It also showed proper circuit protection, fusing, device labels, wire labels, and terminals. Courtesy: TriCoreAnalog output devices are more problematic and not as easily adapted to this approach due to potential loss of signal fidelity. If you simply must control an analog device from two control systems and the systems cannot be networked, if all else fails, place the control (and associated measurement if necessary) in one system, and hardwire the setpoint or output signal (and any associated permissives) between them. Old-school techniques would typically do this with binary coded decimal (BCD) modules on both ends, although other approaches also are possible.

For pneumatically actuated digital devices, pneumatic switching may be used, although this is a less common option.

While there can be many challenges to an I/O upgrade, they are inevitable and worth the trouble, especially with older systems. With proper planning and attention to detail, these upgrades can go smoothly with minimal interruption to your facility.

David McCarthy is president and CEO of TriCore Inc., a Racine, Wisc.-based system integrator. 

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
A cool solution: Collaboration, chemistry leads to foundry coat product development; See the 2015 Product of the Year Finalists
Raising the standard: What's new with NFPA 70E; A global view of manufacturing; Maintenance data; Fit bearings properly
Sister act: Building on their father's legacy, a new generation moves Bales Metal Surface Solutions forward; Meet the 2015 Engineering Leaders Under 40
Cyber security cost-efficient for industrial control systems; Extracting full value from operational data; Managing cyber security risks
Drilling for Big Data: Managing the flow of information; Big data drilldown series: Challenge and opportunity; OT to IT: Creating a circle of improvement; Industry loses best workers, again
Pipeline vulnerabilities? Securing hydrocarbon transit; Predictive analytics hit the mainstream; Dirty pipelines decrease flow, production—pig your line; Ensuring pipeline physical and cyber security
Upgrading secondary control systems; Keeping enclosures conditioned; Diagnostics increase equipment uptime; Mechatronics simplifies machine design
Designing positive-energy buildings; Ensuring power quality; Complying with NFPA 110; Minimizing arc flash hazards
Building high availability into industrial computers; Of key metrics and myth busting; The truth about five common VFD myths

Annual Salary Survey

After almost a decade of uncertainty, the confidence of plant floor managers is soaring. Even with a number of challenges and while implementing new technologies, there is a renewed sense of optimism among plant managers about their business and their future.

The respondents to the 2014 Plant Engineering Salary Survey come from throughout the U.S. and serve a variety of industries, but they are uniform in their optimism about manufacturing. This year’s survey found 79% consider manufacturing a secure career. That’s up from 75% in 2013 and significantly higher than the 63% figure when Plant Engineering first started asking that question a decade ago.

Read more: 2014 Salary Survey: Confidence rises amid the challenges

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.