Intelligent motor control centers help drive savings

It's easy for engineers to overlook one of the keys to success: leveraging technological advances to integrate smart devices, device-level networks and software into motor control systems.

08/03/2009


Manufacturers are continuously seeking new ways to increase productivity, streamline processes and boost their profit margins. Plant engineers can play an important role in this effort by helping to select and implement control solutions that reduce costs, save time and increase the flow of information within automation systems. But with myriad choices available, it's easy for engineers to overlook one of the keys to success: leveraging technological advances to integrate smart devices, device-level networks and software into motor control systems.
Traditionally, motor control centers (MCCs) contained only electromechanical components with hardwired connections. While these components remain the workhorses of MCCs, advances in solid-state technology have resulted in more intelligent, programmable devices that do more than just turn on and off a motor. Today's MCCs monitor motor current and thermal capacity, perform protective troubleshooting functions and provide detailed diagnostics to help avert downtime.
These intelligent MCC designs also address some of the configuration and data-management inefficiencies that device-level networks can create, which include:
• Reliability and flexibility shortcomings associated with typical daisy-chain architectures such as adding new units or accidental breaks in the chain that can affect downstream units in that connection, potentially shutting down equipment
• Potential damage to exposed trunk-line and drop-line network cables in the wireways when pulling and installing other power cables
• Integrating motor control data into the plant control system, and sorting through the enormous data available on the network to find needed information.
Complete integration
The intelligent MCC integrates three major system components - communications, hardware and software - to address these issues. While early versions of MCCs with communication networks contained variations of these elements, today's solutions leverage a harmonized design that deliberately integrates these elements into a unified solution.
A standard MCC installation requires extensive interwiring, documenting and testing in the field. Pretested and pre-configured, the intelligent MCC arrives ready to install. Communication cables are installed and tested at the MCC factory, while software screens come pre-configured for the specific MCC. Additionally, intelligent devices are preprogrammed with baud rate, node number, trip current and other settings.
Communication network capability lies at the heart of an intelligent MCC. The network replaces the traditional control interwiring with a single communication wire. Ideally, all the units have input points to monitor devices such as the disconnect switch, contactor, overload relay or pilot devices. In addition, a network scanner module or network linking device connects the MCC to the plant control network, and collects and distributes the device data in the MCC.
The type of MCC you select for your application can have a significant impact on overall cost, installation time and monitoring capabilities. Therefore, it's important that engineers carefully evaluate the core components of an intelligent MCC system.
Proven, open communication network - The trend toward open networks (as opposed to proprietary networks) has clear and well-documented advantages. The network should provide proven performance, offer a low cost per node and be accepted by a wide range of suppliers and users.
Optimized physical construction - The traditional approach for routing network cables in MCCs is through horizontal and vertical wireways. Although this method works, consider these more optimized approaches:
• Trunk lines and drop lines isolated behind barriers - This design helps users avoid potential damage to communication cables during installation and maintenance
• Independent, easy-connect ports on drop lines - This configuration provides independent, readily accessible ports to simplify installing, withdrawing, relocating and adding plug-in units. The configuration is preferable to a daisy-chain architecture, in which moving or adding an MCC unit requires interrupting the chain and disabling downstream units.
Pre-configured software - To integrate the intelligent MCC hardware elements and deliver useful real-time information with minimal expense and effort, intelligent MCCs should come equipped with a pre-configured monitoring software package. The software delivers a window into the MCC and related equipment. It also eliminates the need to create costly customized MCC screens within operator interface software, yielding a true plug-and-play solution.

Easy installation
Traditionally, MCCs were provided without inter-wiring and required extensive field wiring, documenting, testing and system integration. Because the intelligent MCC arrives ready to install, pretested and pre-configured, it significantly reduces startup time.
Another critical aspect for efficient startup and troubleshooting is detailed documentation, which all too often is incomplete or misplaced altogether. In the case of the intelligent MCC, users can access electronic documentation on the same PC running the monitoring software. This allows users to view the real-time status of the MCC, as well as view CAD drawings, user manuals and spare parts information applicable to specific MCC units.
An intelligent MCC provides users with critical information needed to help minimize or prevent downtime. Remote access to motor-control data also affords an opportunity for reduced exposure to hazardous voltages and improved personnel safety during startup and troubleshooting. This information includes warnings of abnormal operation, identification of trip causes, automated logging of events and electronic documentation.

Reaping the rewards
Intelligent MCCs can deliver considerable cost savings in the form of reduced design, installation, commissioning and documentation time. Savings occur as a result of the significant reduction in cabling requirements. Specifically, users require fewer cables and conduit, and less interface equipment such as terminal boxes, control system I/O modules and interposing relays.
Other benefits include reduced engineering, planning and commissioning times. Intelligent MCC users report installation cost reductions of up to 15%, compared to a conventional MCC installation. In addition, users can achieve operational cost savings through improved diagnostics, which result in faster troubleshooting and, therefore, less downtime.
As the capabilities of intelligent devices continue to increase, intelligent MCCs offer plant engineers an excellent opportunity to benefit from the advanced technology of these control systems. Plant engineers reap the rewards of reduced total cost of ownership through improved diagnostics, increased system reliability, design flexibility and simplified wiring.

Keith Blodorn is a product manager at Rockwell Automation.

 





No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Leaders Under 40 program features outstanding young people who are making a difference in manufacturing. View the 2013 Leaders here.
The new control room: It's got all the bells and whistles - and alarms, too; Remote maintenance; Specifying VFDs
2014 forecast issue: To serve and to manufacture - Veterans will bring skill and discipline to the plant floor if we can find a way to get them there.
2013 Top Plant: Lincoln Electric Company, Cleveland, Ohio
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Bring focus to PLC programming: 5 things to avoid in putting your system together; Managing the DCS upgrade; PLM upgrade: a step-by-step approach
Balancing the bagging triangle; PID tuning improves process efficiency; Standardizing control room HMIs
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.