Integration: Lighting and HVAC systems

By using building energy modeling software, engineers can determine how to size HVAC systems to balance the heat given off by lighting systems, particularly energy-efficient lighting fixtures.

04/16/2013


Learning Objectives:

  1. Learn about the interaction between lighting and cooling loads.
  2. Learn how to use building energy modeling software to incorporate lighting system design and properly size the HVAC systems.  

The use of an energy-efficient lighting design not only provides significant lighting savings, but also can reduce the cooling requirements for a building. Engineers should use building energy modeling software to incorporate lighting system design and properly size the HVAC systems.

Figure 1: An existing meeting space at The Ohio State University Schottenstein Center was renovated into an upscale endowment lounge atmosphere to accommodate VIP guests for concerts and sporting events. The lighting operates at 30% (full power) to 90% (fBuilding energy modeling software is widely used in the industry for a number of purposes including determining energy savings, HVAC design, or as a compliance path for U.S. Green Building Council LEED certification. There are hundreds of different building energy modeling applications available, and each has its strengths and weaknesses. The U.S. Dept. of Energy (DOE) publishes a comprehensive list of building energy software tools on its website.

While there are many important factors in creating an accurate building energy model (building area, orientation, amount of glass, etc.), internal heat gains from people, lights, and equipment in the space contribute to the majority of the cooling load in many buildings. If engineers can develop more accurate energy models, HVAC systems can be optimally sized, resulting in energy-efficient systems with improved thermal comfort for building occupants and satisfied owners.

According to the U.S. EPA Energy Star Building Upgrade Manual, lighting is typically the largest source of waste heat, also known as heat gain, inside commercial buildings. Approximately 18% of the electricity generated in the United States is consumed by lighting loads, with another 5% being used to cool the waste heat generated by the lighting. As shown in Figure 2, lighting constitutes 35% of a building’s electricity use. Because lighting represents the largest portion of a commercial building’s electricity consumption, it also presents a great opportunity for energy savings by using energy-efficient lighting systems and lighting controls. This applies to both existing and new buildings.

Interactive effects of lighting on heating and cooling

The type of lighting systems installed can have a large impact on the HVAC requirements. Reducing the energy used for lighting affects the heating and cooling that will be required. As more efficient lighting systems are installed in buildings, cooling loads will be reduced while heating loads can be expected to increase. On a new building designed with efficient lighting systems, the smaller cooling loads, in turn, allow for a building’s cooling system to be sized smaller (and therefore less expensive to purchase and operate). On an existing building where lighting systems are upgraded to be more energy-efficient, the smaller cooling loads can allow for the existing cooling systems to serve future additional loads or to be replaced in the future with smaller units.

Most buildings are made up of several systems, including lighting, HVAC, and control systems. In order to design for optimal system performance, all building systems must be considered as a whole. When designing a new building or major renovation, interactions between the lighting and HVAC systems should be considered to ensure that equipment is sized properly for real-world conditions. Similarly, for lighting efficiency upgrades, engineers and owners alike should understand and be able to account for the potential heating and cooling load net impacts that various upgrades would create.

Figure 2: New commercial buildings: This graph shows the change in heating and cooling loads caused by a 1 kWh decline in lighting loads. Courtesy: Interactions Between Lighting and Space Conditioning Energy Use in U.S. Commercial Buildings, Lawrence BerkFigure 3: Existing commercial buildings: This graph shows the change in heating and cooling loads caused by a 1 kWh decline in lighting loads. Courtesy: Interactions Between Lighting and Space Conditioning Energy Use in U.S. Commercial Buildings, Lawrence

Figures 2 and 3, adapted from a 1998 Lawrence Berkeley National Laboratory report, Interactions Between Lighting and Space Conditioning Energy Use in U.S. Commercial Buildings, written for the DOE, illustrate the interactions between lighting and space conditioning energy use for commercial buildings in the United States. For a one-unit (kWh) reduction in lighting energy, the corresponding heating and cooling load changes are shown. Note that in large office, large hotel, and hospital building types, the average increase in heating load is offset by four or more times as much of a reduction in cooling load. For small retail and school building types, the heating load energy increase is similar in size to the cooling load energy reduction.

Figures 2 and 3 represent average figures for each building type across all geographical areas of the United States. Actual changes in energy usage for a particular building would be influenced by several other factors including climate, operating conditions, building characteristics, and the efficiency of the HVAC systems. Quantifying the net impact can be difficult; there are software tools to assist with these calculations. A building energy model (computer simulation) can help engineers determine the overall energy impact of lighting systems, including interactive effects with HVAC systems, for a particular building.

One of the inputs for an HVAC load calculation or building energy model is the lighting input power watts (W) or power density (W/sq ft). Table 1 represents an example of how much this input power can be reduced by retrofitting existing inefficient T12 lighting systems in a building with various T8 efficient lighting system options. Using standard T8 systems results in a 26% energy savings compared to the baseline case, while high-performance T8 systems result in a 42% savings. Retrofitting T12 lighting fixtures with high-performance T8 lamps and ballasts, new lenses and mirrored specular reflectors can allow half of the lamps to be removed resulting in a 71% energy savings while still maintaining the same illuminance levels. Also, incorporating occupancy sensing and daylight dimming controls will provide additional energy savings. Note that this table does not account for the additional energy savings that may be realized by decreased cooling loads.

Table 1: Fluorescent retrofit options are compared by power, energy use, cost, and payback. Courtesy: E Source; Lighting Technology Atlas (2005)


<< First < Previous 1 2 Next > Last >>

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
2016 Product of the Year; Diagnose bearing failures; Asset performance management; Testing dust collector performance measures
Safety for 18 years, warehouse maintenance tips, Ethernet and the IIoT, GAMS 2016 recap
2016 Engineering Leaders Under 40; Future vision: Where is manufacturing headed?; Electrical distribution, redefined
SCADA at the junction, Managing risk through maintenance, Moving at the speed of data
Safety at every angle, Big Data's impact on operations, bridging the skills gap
The digital oilfield: Utilizing Big Data can yield big savings; Virtualization a real solution; Tracking SIS performance
Applying network redundancy; Overcoming loop tuning challenges; PID control and networks
Driving motor efficiency; Preventing arc flash in mission critical facilities; Integrating alternative power and existing electrical systems
Package boilers; Natural gas infrared heating; Thermal treasure; Standby generation; Natural gas supports green efforts

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role of plant safety and offers advice on best practices.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me