Integrating HART data from smart devices



Figure 2: Pressure sensors, flowmeters, and other instruments usually gather other information in addition to the primary variable that can be useful to the process. These secondary variables can be accessed with HART. Courtesy: Monsanto MuscatineAnother solution that uses the HART Protocol is WirelessHART. Using a simple, reliable and secure mesh network, WirelessHART can be viewed as a remote I/O system. Using mesh network technology multiple devices communicate to a gateway that collects all of the process and device diagnostics information and communicates it to a control, asset management or other host system via HART-IP, Modbus TCP, RS485 or others. WirelessHART can be a cost-effective solution for adding new measurements to an existing plant or accessing HART information from existing devices. Typical applications include tank farm monitoring, pipelines, rotating or moving assets, etc.

Many field instruments are now available as native wireless devices, or a wireless adapter can be added to a wired device. Adapters can use the same communication method as a native WirelessHART device.


The latest enhancement to the HART Protocol, HART-IP, defines a standard solution to gain high-speed access to HART device diagnostics and process measurements using a plant's installed networking infrastructure. HART-IP offers the most straightforward way to access all the standard HART information available in a HART device. It allows the information from these devices to be brought up to the Ethernet level easily, without the need to go through any translation processes and with no loss of information. HART-IP can be used for the integration of device information from multiplexer, remote I/O and WirelessHART. When used with WirelessHART, it provides a very cost-effective solution to access measurement information from anywhere in the plant or the enterprise.

Handhelds and single modems

In many situations, a maintenance person or instrumentation engineer may need to configure or check the diagnostic information from an individual field device. There are many types of single HART modems and handheld communicators that can provide an interface easily and inexpensively. Such devices are not limited by manufacturer and can communicate with any instrument or actuator, thanks to the interoperability built into the HART Protocol.

Small single modems can be inserted into a loop whenever needed in the plant or maintenance shop. Such devices can communicate with a laptop or other host system using USB, RS232, or even Bluetooth wireless when a configuration or asset management application is installed.

Today's handheld communicators and calibration tools are hugely versatile and can contain device descriptors for hundreds of devices. The maintenance technician can connect the unit to a field device and it can call up the relevant information from its memory. If necessary, the configuration can be changed or the diagnostic data retained for downloading back at the maintenance shop.

While these individual communication devices can be very useful, they have the inescapable limitation that they require a technician to be involved and can only communicate with one device at a time. By contrast, a fully HART-enabled I/O system can perform all of the above functions on any HART-enabled field instrument or actuator at any time from the control room or maintenance shop.

Work practices: Commissioning and maintenance

Figure 3: Native HART-enabled I/O (left field control unit) gathers HART information seamlessly. In systems where HART I/O isn’t available, multiplexers can gather information and send it to an asset management system without interfering with the existingWhen new field devices are going to be installed or brought in for maintenance in the shop, HART Communication can be the means to get them configured properly and tested before returning to operation. The ability to check and verify performance before installation can save an enormous amount of time compared to installing and then removing sensors that aren't ready for use. During the commission phase of a project, HART information can be used to reduce the commissioning time.

Once a new device has had its HART tag name assigned and ranged for that application in the process, it can be ready for the next round of checks where HART information can be provide ease during the checks:

  • Verification of the device's location, physically and I/O;
  • Calibration;
  • Configuration and loop check;
  • Alarm and interlock validation; and,
  • Online operation validation.

Similarly, field instruments and smart valve controllers/positioners can be checked in the shop before returning to operation. A well-developed maintenance program can prescribe a routine of tests tailored to an individual device or group via HART communication to check whatever attributes are most critical. Working through this procedure avoids problems and helps train new technicians.

Once back in place, transmitters and valves can be given final verification before resuming the process. Or, tests can be performed in-situ rather than in the shop. HART can help test a variety of critical attributes, including:

  • Verify proper tag and location;
  • Verify wiring and power supply;
  • Check signal integrity and grounding;
  • Re-zero, check range and span calibration;
  • Verify analog trim for DCS output;
  • Send simulated process variable to verify DCS reading;
  • Capture new valve signature for baseline;
  • Set alarms and security configuration; and,
  • Configure and calibrate additional process variables. 

Many device management platforms can record and catalog the results of these tests and adjustments for maintenance recordkeeping.

Work practices: Partial-stroke valve testing

In a plant that is performing well, emergency shutdown (ESD) valves may go for years without having to perform their function. While avoiding upsets and accidents is a good thing, safety protocols require that ESD valves be tested to verify that they still work properly. Valves that aren't operated regularly can fail when called upon due to excessive stem friction, packing problems, air pressure leakage, or other maintenance issues.

ESD valve testing using a full-stroke test (FST) is problematic since cycling these valves can interfere with production. Safety protocols therefore make provisions for partial-stroke testing (PST) of ESD valves in many situations in a way that verifies their performance while minimizing operational disruptions.

Companies that use this technique perform PSTs at regular intervals, allowing for less frequent FSTs. The ways in which ESD valve testing fits into a larger safety program is beyond the scope of this discussion, but once the protocols are established and approved for a given plant, HART-enabled valve positioners and controllers makes PSTs easier to perform and document.

An asset management program can automate the mechanics of PST programs, performing the tests and gathering diagnostic information via HART via this straightforward method:

  • Valves are categorized into device groups;
  • Program sets schedules in keeping with larger safety system requirements; and,
  • Program retains historical data from each test, allowing identification of trends that may indicate developing maintenance problems. 

Your next step

Hopefully this discussion has convinced you that there are many ways in which HART Communication can support improved plant performance and asset management. The most difficult step is often making the effort to put it to work. There are many stories of companies that have done it successfully and enjoyed the benefits of higher production and reduced maintenance costs, but implementation requires procedural and often cultural changes among your production, reliability, and maintenance teams.

HART may not deliver all the performance of an advanced fieldbus such as Foundation fieldbus or Profibus PA, but it is much less expensive to implement as it often can use existing instruments and valves.

The issues are not technical since hardware and software solutions are readily available. Often a successful HART-enabled maintenance program can trace its origin to a single enthusiastic individual that emerged as a champion, leading the company into a new period of improved performance and reduced costs.

Amit Ajmeri is a consultant for wireless and field network technology at Yokogawa Corporation of America.

- See related articles below.

<< First < Previous 1 2 Next > Last >>

LARRY , TX, United States, 04/08/14 02:14 PM:

Nice article Amit!
ADEBOYE , IA, Nigeria, 04/10/14 12:06 PM:

This is a good writeup with clarity
Anonymous , 07/21/14 12:03 AM:

I personally agree that most plants mainly use HART with handheld field communicators.

HART multi-drop topology is sometimes used in remote applications such as with RTUs monitoring wellheads in oil & gas fields. The scan time for a HART multi-drop bus with a few devices polling digital PV is several seconds but in this application that is sufficient. I also agree that the scan time is not constant as it gets longer when devices are periodically polled for diagnostics or the system is looking for devices. For this reason 4-20 mA/HART is mainly used in point-to-point topology using on the analog 4-20 mA for the real-time PV.

I agree that if the plant is using 4-20 mA/HART devices the best way is to have native support in the host system. If a plant wants to make use of diagnostics monitoring and internal variable monitoring (and they should) with ‘always on’ 24/7 digital communication it is very important that the installation is good to avoid nuisance alarms from communication errors. Installation should take the grounding and shielding etc. rules of the digital HART communication protocol into consideration.

Learn more about internal variable monitoring

Learn more about diagnostics monitoring

I am also of the same opinion that using WirelessHART adapters is a cost-effective solution to accessing HART information from existing devices if there is no native HART support in the system I/O cards. This is particularly valuable for in-line devices like control valves and flowmeters which are labor intensive and disruptive to remove, so it is good to be able to check their health without having to remove them first. This way you can decided which valves and flowmeters you need to pull and which ones you don’t.

I too agree that institutionalizing device diagnostics in daily maintenance work process and turnaround planning require change of procedure and culture. Learn more from the guide found here:
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Sister act: Building on their father's legacy, a new generation moves Bales Metal Surface Solutions forward; Meet the 2015 Engineering Leaders Under 40
2015 Mid-Year Report: Manufacturing's newest tool: In a digital age, digits will play a key role in the plant of the future; Ethernet certification; Mitigate harmonics; World class maintenance
2015 Lubrication Guide: Green and gold in lubrication: Environmentally friendly fluids and sealing systems offer a new perspective
Drilling for Big Data: Managing the flow of information; Big data drilldown series: Challenge and opportunity; OT to IT: Creating a circle of improvement; Industry loses best workers, again
Pipeline vulnerabilities? Securing hydrocarbon transit; Predictive analytics hit the mainstream; Dirty pipelines decrease flow, production—pig your line; Ensuring pipeline physical and cyber security
Cyber security attack: The threat is real; Hacking O&G control systems: Understanding the cyber risk; The active cyber defense cycle
Designing positive-energy buildings; Ensuring power quality; Complying with NFPA 110; Minimizing arc flash hazards
Building high availability into industrial computers; Of key metrics and myth busting; The truth about five common VFD myths
New industrial buildings: Greener, cleaner, leaner; New building designs for industry; Take a new look at absorption cooling; Offshored jobs start to come back

Annual Salary Survey

After almost a decade of uncertainty, the confidence of plant floor managers is soaring. Even with a number of challenges and while implementing new technologies, there is a renewed sense of optimism among plant managers about their business and their future.

The respondents to the 2014 Plant Engineering Salary Survey come from throughout the U.S. and serve a variety of industries, but they are uniform in their optimism about manufacturing. This year’s survey found 79% consider manufacturing a secure career. That’s up from 75% in 2013 and significantly higher than the 63% figure when Plant Engineering first started asking that question a decade ago.

Read more: 2014 Salary Survey: Confidence rises amid the challenges

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.