Industrial wireless for automobile manufacturing

Why and how are automobile manufacturing plants moving to wireless network technologies? Reasons include less cable failure, easier diagnostics and reconfiguration, and faster return on investment.

05/21/2012


The Honeywell Limitless network consists of several different types of wireless, battery-operated limit switches and a Honeywell Limitless WDRR Receiver that can talk to as many as 14 switches at a time. Courtesy: Honeywell Sensing and Control

Over the last few years, many different industrial applications have become part of the wireless revolution. One of the most interesting is the automotive industry. A variety of forces drive the rapid adoption of wireless for automotive factories. These include survivability in harsh conditions, ease of troubleshooting and repair, as well as system flexibility for easy reconfiguration.

Constantly moving and twisting components shortens cable lifetimes. When combined with the hazardous chemicals often found on an assembly line, cables do not survive long and they need to be troubleshot and repaired.

Easier wireless troubleshooting

Another advantage of wireless is the reduction of downtime associated with troubleshooting and repairing an industrial wired network.

A busy automotive factory can lose a car for every two minutes the line is stopped for repair. Every minute of downtime can cost tens of thousands of dollars. Troubleshooting a wireless network is much easier and quicker than tracking down a shorted or defective cable connection.

Finding the bad spot in a cable and then working to repair it often costs more than the total parts and labor expense of installing a wireless network. It can be quite difficult to locate and then repair the bad spot in a cable as it twists and winds around complex machinery coated with heavy layers of paint, grease, and grime. Many plants simply give up on maintaining data wires, choosing instead to dump the old cables and move to industrial wireless communications. In these harsh environments, wireless switches in sealed, protective housings can successfully function far longer than cabling.

To ensure the robustness of the wireless switch network, each switch provides a way to ensure that the signal gets through to the monitoring receiver. In extremely radio frequency (RF) noisy environments or those with lots of moving equipment, switches can be programmed to retransmit the signal until it gets through. The wireless receiver monitors signal quality to ensure that it reliably receives signals from each switch node. In addition, in the case of battery powered switches, each switch has a power monitoring function that provides an alarm when the batteries begin to get low.

Quick wireless reconfiguration

Another powerful feature driving the adoption of industrial wireless in auto plants is the innate flexibility of wireless. As assembly lines are often reconfigured as new automobile product lines are introduced, not rerunning data cables is yet another great return on investment (ROI) advantage.

Using a wireless network enables quick reconfiguration of the switches and controllers, as well. Is the location of the control hub not optimal for the new assembly line plan? If so, just move it. Attach it where it works best, plug it in to power, and monitor the wireless switch network restarts. If it’s still not right, just unplug it, move it, and power it back up. Later, when it comes time to redesigning the factory floor for a new model year, the factory manager does not have to spend time remapping the data and control cable paths.

Lower wireless costs

Honeywell Limitless wireless network’s design flexibility and ease of maintenance help reduce downtime and keep the automotive assembly line moving. Courtesy: Honeywell Sensing and ControlAutomotive factory managers and assembly line designers have found that the cost of going wireless is much less than the long-term, accelerating expenses of maintaining, reconfiguring, and repairing cables.

Improved wireless ROI—for repair and maintenance and lower overall operating costs, as well as flexibility of installation and reconfiguration—is the principal driver for the increasing rapid acceptance of wireless into the industrial environment.

In the last year, informed wireless buyers have become more educated in the kinds of questions to ask. They have become more comfortable implementing wireless solutions when they get the right answers.

Among questions still asked: “Is wireless secure, and can it really function in an industrial setting?” [Yes, and yes.]

Most questions now are about how wireless will work in customers’ own environments, and how to effectively replace wires and cables with wireless. A motivating factor behind the shift is the freedom, value, and ROI that wireless delivers to factories and industrial plants.

- Todd Hanson is director of wireless solutions, Honeywell Sensing and Control; Edited by Mark T. Hoske, content manager CFE Media, Control Engineering, Plant Engineering, and Consulting-Specifying Engineer. He can be reached at mhoske@cfemedia.com.

www.honeywell.com/ps/wireless 

www.honeywell.com/sensing 

http://controleng.com/wireless

Sensor selection: Consider more than capital costs

(Originally posted May 18. Date changed for inclusion in subsequent newsletter.)



The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
A new approach to the Skills Gap; Community colleges may hold the key for manufacturing; 2017 Engineering Leaders Under 40
Doubling down on digital manufacturing; Data driving predictive maintenance; Electric motors and generators; Rewarding operational improvement
2017 Lubrication Guide; Software tools; Microgrids and energy strategies; Use robots effectively
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Power system design for high-performance buildings; mitigating arc flash hazards
Research team developing Tesla coil designs; Implementing wireless process sensing
Commissioning electrical systems; Designing emergency and standby generator systems; Paralleling switchgear generator systems

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me