Industrial network integration improves productivity

Selecting industrial networking protocols, industrial Ethernet included, helps improve production efficiency and quality, with enterprise connectivity. Connectorized networking decreases repair time to minutes from hours.

08/15/2012


To help manufacturers accommodate evolving networking requirements, such as decentralization of control, integrated diagnostics, and simplified maintenance, network protocols integrate with industrial equipment and control systems to communicate crucial status updates and production data. A powerful industrial tool to streamline manufacturing production is reliable, enterprise-wide connectivity, providing the highest level of visibility, control, and flexibility—helping to increase productivity and reduce operating costs.

With the migration away from point-to-point connection, advanced networking architectures ensure connectivity, collaboration, and integration from the device level to enterprise business systems. By examining the performance capabilities and application suitability of industrial networks (such as DeviceNet, Profibus, and various Ethernet protocols), manufacturers can select the ideal networking solution for continuous, complete control over all production components.

Proactively enhancing networking capabilities provides advantages ranging from complete process efficiency and remote access to system controls, to faster response times, to factory floor events and minimized downtime, to name a few. By maximizing production control, enterprise connectivity can improve product quality, customer satisfaction, and company profitability.

When choosing a networking solution, users must understand the individual communication requirements as well as any environmental challenges present in each application. Evaluating the performance capabilities, features, and characteristics of industrial protocols can assist manufacturers in selecting the ideal networking solution for critical communication needs.

DeviceNet

Supporting up to 64 nodes and virtually unlimited amounts of I/O, DeviceNet is compatible with a wide range of industrial manufacturing products, connecting to nearly any device and allowing stations to be easily added to existing operations. Courtesy: TuDeviceNet is a low-cost communication protocol that connects and serves as a communication network between industrial controllers and I/O devices, with each device serving as a node on the network. The protocol is used for connecting and networking a wide variety of industrial devices, including limit switches, sensors, valve manifolds, motor starters, process sensors, bar code readers, variable frequency drives, panel displays, and operator interfaces. DeviceNet is based on the Controller Area Network (CAN) broadcast-oriented communication architecture, which ensures that the highest priority messages always have access to the bus in the event of a data collision. With DeviceNet, these priorities are further defined, giving top priority to I/O messages and lower priority to configuration messages.

Capable of operating on a client/server and a master/slave basis, DeviceNet accommodates diverse communication needs. With client/server, the network provides a convenient way to interconnect programs that are distributed efficiently across different locations. It also allows peer-to-peer data exchange, where a node can initiate communication with other nodes or peers. Through master/slave operation, the master node initiates all communication with all other nodes responding to the master’s request. DeviceNet is best suited for collecting and managing I/O data that machine and process control systems rely on.

Supporting up to 64 nodes, DeviceNet networks offer virtually unlimited amounts of I/O. The bus uses a trunkline-dropline topology, which allows bus power and communication to be supplied on a single cable. DeviceNet is compatible with a wide range of industrial manufacturing products, enabling it to connect to nearly any device and allow stations to be easily added to existing operations. Further, by permitting direct connections to control devices, DeviceNet eliminates point-to-point wiring, which improves communication between devices as well as provides critical device-level diagnostics not easily accessible through point-to-point I/O interfaces.

DeviceNet is connected to programmable logic controllers (PLCs) to obtain and transmit messages to the network via these PLCs, which are typically programmed via PCs. These stations are designed to transfer data from industrial devices to the controllers, as well as to perform different control functions, such as PID loops, start/stop motors, turn indicators ON and OFF, position valves, and more. Plus, for enhanced flexibility, devices connected to DeviceNet stations can also be hot swapped—removed and replaced without affecting other operations connected to the station. ODVA is the governing organization for this protocol.

Profibus

Profibus is an industrial network protocol that connects field I/O devices in order to eliminate hardwiring. Profibus is designed to increase device-level diagnostic capabilities while maintaining high-speed communication between devices. Profibus-DP, a version of Profibus based on the RS-485 serial data transfer standard, is ideal for use in factory automation and machine control solutions. RS-485 allows multiple devices (up to 32) to communicate at half-duplex on a single pair of wires, at distances up to 1200 meters (4000 ft).

A Profibus-DP network supports up to 126 nodes with virtually unlimited I/O, with power and communication provided via separate cables, allowing easy segmentation of the power structure to avoid overloading. Plus, network length and the number of nodes can easily be extended using a variety of repeater products. This enables control of manufacturing and other processes over a wide area—such as the factory floor—from a central computer control station.

When selecting a network protocol, speed is a critical factor. Profibus is capable of running data rates as high as 12 Mbaud. However, when it is used at high speeds, the cable drop length from the trunk to a node is severely limited. For example, when manufacturers are using Profibus at 12 Mbaud, nodes must be directly connected to the trunk, with no drop length allowed.

In addition to providing the communication capabilities required for machine control applications, Profibus is also well suited for process applications and hazardous area locations. When implementing this network solution in challenging industrial environments, Profibus-DP can be directly connected to I/O devices in classified areas, resulting in a significant savings on barriers and wiring. Further, Profibus-PA, another version of Profibus, operates as an extension from the Profibus-DP system that allows network communication directly in hazardous areas. PI North America (which also offers an Ethernet protocol, Profinet) is the regional governing organization for Profibus.

Ethernet

An Ethernet TCP/IP network can extend communication plant-wide, allowing users to connect to a corporation’s worldwide network via the Internet. Courtesy: TurckThe Ethernet physical layer was developed with the primary purpose of conveying large amounts of information. Applied first to office-level networks, where multiple clients use the network to share information, Ethernet has expanded beyond traditional usage to the plant floor, especially with the advent of industrial Ethernet protocols (such as EtherNet/IP from ODVA). Ethernet communications can be used for industrial data collection, transmission, and monitoring.

When the EtherNet/IP protocol is used over the Ethernet physical layer, the exchange of data is based on the producer/consumer model. This means that a transmitting device produces data on the network and multiple receiving devices consume this data simultaneously. Traffic generated during this data exchange can include input/output data and status updates produced by a remote device for consumption by one or more programmable controllers. Data collected and controlled via EtherNet/IP can use an unacknowledged method of sending information between devices on a network, which means that data delivery is not guaranteed. Therefore, to ensure delivery, a higher layer must be implemented prior to data transfer.

Transmission Control Protocol/Internet Protocol (TCP/IP) provides a set of services so devices may communicate over an Ethernet network. With the increased prevalence of Internet and intranets for internal information distribution, TCP/IP has grown and has been transported to all major computer operating systems. A typical example of when a manufacturer would implement an Ethernet TCP/IP network is to extend communication plant-wide to connect to a corporation’s worldwide network via the Internet. Ethernet TCP/IP can take advantage of Ethernet’s high capacity for data management to perform a wide variety of tasks, without requiring a high level of determinism or repeatability for message response time. Common TCP/IP applications include program maintenance, data transfer, web page retrieval, supervisory control, connectivity for operator interfaces and events, and alarm recording.

Faster connectivity

Network protocols connect the office with the plant floor, providing secure, seamless interoperability among manufacturing enterprise networks for constant internet and enterprise connectivity. Courtesy: TurckAs plants expand and information is required to move across greater distances, at faster speeds, and in larger quantities, maintaining reliable enterprise connectivity is necessary for continued overall production. Since network protocols connect the office with the plant floor, providing secure, seamless interoperability among manufacturing enterprise networks enables constant Internet and enterprise connectivity. Implementing a complete, end-to-end networking solution provides a wide range of benefits, including a lower overall total cost of ownership (TCO), a higher return on investment (ROI) due to real-time visibility and flexibility, reduced network maintenance, and decreased labor costs.

Connectorized networks allow for modularity, which traditional wiring methods cannot provide, as an electronic control system cannot be easily modified using conduit and individual wires. In contrast, modular networks can be engineered and modified quickly and easily—significantly reducing design and manufacturing time.

One immediate advantage to enterprise connectivity is the reduced cost of installation and maintenance. With their plug-and-play simplicity, implementing facility-wide networking solutions is accomplished significantly faster than traditional wired connections. The time required to strip the jacket, prepare the conductors, feed the cable through a gland, insert the wires into the terminals, and tighten the cable gland can be as much as 5 to 10 min. per connection. This process can become even more complex and time-consuming when traditional wiring is being installed in physically demanding locations. Plus, with the elimination of wiring errors, manufacturers experience greater savings by limiting production downtime and maintenance to ensure continued performance.

Further, one of the most beneficial features of connectorized networks is the minimal repair time, completed in minutes rather than hours, as any section of a network or I/O cable can be replaced in seconds. Fully connectorized networks essentially eliminate signal wire troubleshooting and repair. Providing constant access to real-time data improves plant operations by providing diagnostic information of any problem faster, improving uptime with corrective action capabilities. Additionally, by delivering faster, less costly plant upgrades, expansions, and changeouts, connectivity promotes enterprise growth and plant efficiency. 

Industrial networking future

Connectivity is becoming the foundation for enterprise efficiency and productivity, as the demand for constant communication grows. With advanced protocol capabilities, manufacturers can implement the ideal networking solution to achieve, fast, secure, and reliable data transfer factory-wide.

- Bob Kollmeyer is business development manager—networks, Turck. Edited by Mark T. Hoske, content manager CFE Media, Control Engineering and Plant Engineering, mhoske(at)cfemedia.com.

Network products Channel on Control Engineering   

System integration and networking articles  



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Leaders Under 40 program features outstanding young people who are making a difference in manufacturing. View the 2013 Leaders here.
The new control room: It's got all the bells and whistles - and alarms, too; Remote maintenance; Specifying VFDs
2014 forecast issue: To serve and to manufacture - Veterans will bring skill and discipline to the plant floor if we can find a way to get them there.
2013 Top Plant: Lincoln Electric Company, Cleveland, Ohio
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Bring focus to PLC programming: 5 things to avoid in putting your system together; Managing the DCS upgrade; PLM upgrade: a step-by-step approach
Balancing the bagging triangle; PID tuning improves process efficiency; Standardizing control room HMIs
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.