Improving security in the cloud

Cloud computing will keep increasing as the demand for computing power increases.


ISSSourceCloud computing will keep increasing as the demand for computing power increases.

That increase also raises some crucial questions about security like can a user perform computations on data stored in “the cloud” without letting anyone else see the information?

There will soon be the capability to work on data while it is still undergoing encryption, giving an encrypted result that a user can later securely decipher, according to research at the Weizmann Institute and MIT.

Cloud computing is simply an operation carried out on a network of shared, remote servers and the idea of securing the cloud has been an issue in the industry for quite a while.

Attempting computation on sensitive data stored on shared servers leaves that data exposed in ways that traditional encryption techniques can’t protect against.

The main problem is that to manipulate the data, you first have to decode it. “Until a few years ago, no one knew if the encryption needed for this sort of online security was even possible,” said Dr. Zvika Brakerski, who just completed his PhD in the group of Professor Shafi Goldwasser of the Computer Science and Applied Mathematics Dept. at Weizmann.

In 2009, however, Craig Gentry, a PhD student at Stanford University, provided the first demonstration of fully homomorphic encryption (FHE). But the original method was extraordinarily time consuming and unwieldy, making it highly impractical. Gentry constructed his FHE system by using fairly sophisticated math, based on ideal lattices, and this required him to make new and unfamiliar complexity assumptions to prove security.

Gentry’s use of ideal lattices seemed inherent to fully homomorphic encryption; researchers assumed they were necessary for the server to perform such basic operations as addition and multiplication on encrypted data.

Brakerski, together with Dr. Vinod Vaikuntanathan (who was a student of Goldwasser’s at MIT), surprised the computer security world earlier this year with two papers describing several new ways of making fully homomorphic encryption more efficient.

For one, they managed to make FHE work with much simpler arithmetic, which speeds up processing time. And a surprise discovery showed a mathematical construct used to generate the encryption keys could be more simple without compromising security. Gentry’s original ideal lattices are theoretical collections of points that can add together – as in an ordinary lattice structure – but also multiplied. But the new research shows the lattice does not have to be ideal, which simplifies the construction immensely. “The fact that it worked was something like magic, and it has challenged our assumptions about the function of the ideal lattices in homomorphic encryption,” Brakerski said.

Their result promises to pave a path to applying FHE in practice. Optimized versions of the new system could be hundreds – or even thousands of times faster than Gentry’s original construction.

Indeed, Brakerski and Vaikuntanathan have managed to advance the theory behind fully homomorphic encryption to the point that computer engineers can begin to work on applications.

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Safety for 18 years, warehouse maintenance tips, Ethernet and the IIoT, GAMS 2016 recap
2016 Engineering Leaders Under 40; Future vision: Where is manufacturing headed?; Electrical distribution, redefined
Strategic outsourcing delivers efficiency; Sleeve bearing clearance; Causes of water hammer; Improve air quality; Maintenance safety; GAMS preview
SCADA at the junction, Managing risk through maintenance, Moving at the speed of data
Safety at every angle, Big Data's impact on operations, bridging the skills gap
The digital oilfield: Utilizing Big Data can yield big savings; Virtualization a real solution; Tracking SIS performance
Applying network redundancy; Overcoming loop tuning challenges; PID control and networks
Driving motor efficiency; Preventing arc flash in mission critical facilities; Integrating alternative power and existing electrical systems
Package boilers; Natural gas infrared heating; Thermal treasure; Standby generation; Natural gas supports green efforts

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role of plant safety and offers advice on best practices.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me