IEEE: Computing, robotics, education benefit from tighter human-technology interactions

Seven emerging technologies (see photos) could result in automated guided vehicles that never stop to recharge, more nimble robotics, and smarter trending for better pattern recognition to detect cancer as it forms (which could advance predictive controls). Other advances include robotic exoskeletons and...

03/17/2009



Efficient wireless power. WiTricity diagram shows how a power source, left, is connected to ac power. Blue lines represent the magnetic near field induced by the power source. Yellow lines represent the flow of energy from the source to the WiTicity capture coil, which is powering a light bulb. The magnetic field (blue lines) wrap around a conductive obstacle between the power source and the capture device.

Seven emerging technologies in biomedical engineering, biometrics, computing, robotics, telecommunications, and wireless power, are among world-changing technologies that today's engineers are exploring.ect cancer earlier.
One engineering
These advances in human-technology interactions, important for human quality of life, can help manufacturing efficiency, too.
Click on each first link below to read more about each speaker’s presentation in the IEEE March 10 webcast, or scroll down and read them all.
After you're done, answer one or all of the TalkBack questions using the tool at the bottom of the page to advance discussion on what these developments mean to you.
- Recharge devices wirelessly: Katie Hall, chief technology officer, WiTricity ;
- Predict the future with pattern analysis : Rangachar Kasturi, professor, University of South Florida ;
- Math sees cancer as it forms : K.J. Ray Liu, professor, University of Maryland, College Park
- Human-level computing : Dharmendra Modha, manager, cognitive computing, IBM Almaden Research Center ;
- Defeat paralysis, walk again : Miguel Nicolelis, co-director, Center for Neuroengineering, Duke University Medical Center ;
- Learning slate helps illiteracy : Krishna Palem, professor, George Brown School of Engineering, Rice University ; and
- Interoperable, shared electronics : Roy Want, senior principal engineer, Intel Corp .
These and other major efforts aim to inspire engineering. Nicolelis, answering a question afterward, spoke in favor of funding for major scientific projects, for the advancements and benefits they’ll bring, and also to encourage and uplift young people about the excitement of engineering.
“After I saw an American going to the moon, I believed science could do anything,” Nicolelis says. And it seems, science still can do anything, including the following.

Katie Hall, chief technology officer, WiTricity

Katie Hall, chief technology officer, WiTricity

Efficient, wireless power

: A more efficient means for wireless power transmission is coming soon, says Hall, from WiTricity . Using magnetic resonance ideas that originated with MIT, milliwatts to kilowatts of power can be transferred wirelessly,ng devices (avoiding slip rings).
Other applications, Hall suggested, include implanted hearts, electric or hybrid vehicle charging without plugs, and hang-up flat screen televisions without cords.

Rangachar Kasturi, professor, University of South Florida

Rangachar Kasturi, professor, University of South Florida

Predict the future with pattern analysis

. Kasturi suggests we can help predict the future based on the present and past.
The work can improve prediction of hurricane paths, more accurate code reading, speech, face, medical image, image and video search on the Internet without keywords, and DNA analysis, Kasturi says. Learn more at www.iapr.org and www.icpr2008.org .

K.J. Ray Liu, professor, University of Maryland, College Park

K.J. Ray Liu, professor, University of Maryland, College Park

Better health through math

: Liu created a microarray that translates biological (seemingly random) information in DNA into to an expression of data that can be read. The ensemble dependence model (EDM) looks at proteins broken into small pieces and analyzed, predicting cancer development with 85% to more than 99% accuracy, he says, for cancers of the lungs, stomach, colon, prostate, and ovaries.

A cancer prediction model is identifying when tissues transition to cancer, Liu says.

A cancer prediction model is identifying when tissues transition to cancer, Liu says.

The model sees past data that’s normally too noisy to reveal patterns, an application that could have potential in many industrial applications as well, where seeing past noise in data remains important in trend analysis, such as predictive control.

Dharmendra Modha, manager, cognitive computing, IBM Almaden Research Center

Dharmendra Modha, manager, cognitive computing, IBM Almaden Research Center

Human-brain capable computers:

Through advances in neuroscience, supercomputing and nanotechnology, researchers are trying to reverse engineer the brain to recreate its power as quickly and economically as possible, Modha says. With real-time simulation of a rat brain cortex possible now, a human brain is only a factor of 400 away, Modha says.
By 2018, human-scale computing will be possible based on projections, but different computing structures would be useful, as biology is much more efficient with space and power.

Modha showed a spreadsheet that represents the cortical functions of a monkey brain.

Modha showed a spreadsheet that represents the cortical functions of a monkey brain.

Modha showed measurements including neurons, synapses, communication speed, computation power, and memory. While a

In 2018 computers will rival human-scale computing

Rat

Computer*

Human

Computation

78.4TF

91.8 TF

38.5PF

Memory

7.2TB

8 TB

3.5PB

* BlueGene/L, using 32,768 CPUs

TF is teraflop; TB is terabyte;

PF is petaflop; PB is petabyte

Source: Control Engineering

and

IBM Almaden Research Center via IEEE presentation

Walk again

:

Miguel Nicolelis, co-director, Center for Neuroengineering, Duke University Medical Center

Miguel Nicolelis is co-director at the Center for Neuroengineering, Duke University Medical Center.

He analyzed a monkey brain, and, with orange juice as incentive, taught the monkey to interact with a brain machine interface that let the monkey
Beyond just having another hand to help out, applications for this technology might first include an exoskeleton that could be operated by paralyzed persons, Nicolelis says. Eventually, signal processing might be sensitive enough for a device to translate brain signals past a break in a nerve to power the human’s own muscles on the other side, in a brain-machine-brain interface, he says. More sophisticated signal processing might feed the brain input from human pressure sensors (touch receptors) in the skin so the brain could again naturally operate a closed control loop, Nicolelis says.

Krishna Palem, professor, George Brown School of Engineering, Rice University

Krishna Palem, professor, George Brown School of Engineering, Rice University

Literacy efforts

: Palem is using probabilistic electronics to advance literacy and sustainable literacy with what’s called the I-Slate. In India, Palem says, 105,964,434 students have no electricity, and 417,389 primary schools have fewer than 3 teachers. The I-Slate, essentially a solar-powered chalk slate in form factor, is less complex than a laptop and more economical. It uses a probabilistic integrated circuit that analyzes images on a screen from a human’s perceptive and updates the moving image only as the brain requires for clear seeing in the mind’s eye, which, Palem suggests, is more efficient than uniform screen updates.
Interoperable electronics will share resources, if allowed . Suppose the display on a transmitter is trying to tell you something, but you need the big picture? Project the information onto the screen of a nearby portable operator interface. Or, at 2 a.m., when the plant is calling with a problem, extend the browser-based HMI from your laptop onto your flat-screen television, so your bleary eyes can see a little better.

Roy Want, senior principal engineer at Intel, Dynamic Composable Computing

Roy Want, senior principal engineer at Intel, Dynamic Composable Computing

Roy Want seeks to improve such mobile computing experiences. Why shouldn’t a cell phone, for instance, transmit diagnostics to the appropriate technician on the next continent to resolve the problem and get the manufacturing line running again faster?
IEEE began as the American Institute of Electrical Engineers (AIEE), and Thomas Edison and Alexandar Graham Bell were among founding members. For a lot more about the engineering past and what’s next, see www.ieee125.org .
The webcast was accessed via www.ieee125.org/engineering-the-future/media-roundtable.html .


TalkBack questions
: Advance discussion on what these developments mean to you by using the tool below to enter your answers.
- Which technologies discussed here could do you the most good in your workplace and why?
- Which development was most unexpected for you and why?
- What other manufacturing, control, automation, or instrumentation applications did you think of for some of these technologies?
Mark T. Hoske , editor in chief
Control Engineering News Desk
Register here and scroll down to select your choice of eNewsletters free .





No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.