IEEE 1588 PCI interface for distributed synchronization

Engineers now can use the new, National Instruments PCI-1588 interface to synchronize clocks and events on multiple distributed devices with sub-microsecond precision using the IEEE 1588 precision time protocol (PTP), the company says. The new interface can be used to develop synchronized data acquisition systems and to synchronize IEEE 1588-capable industrial control and t...

11/01/2005


Engineers now can use the new, National Instruments PCI-1588 interface to synchronize clocks and events on multiple distributed devices with sub-microsecond precision using the IEEE 1588 precision time protocol (PTP), the company says.

The new interface can be used to develop synchronized data acquisition systems and to synchronize IEEE 1588-capable industrial control and test and measurement devices, including future Class A and B LXI devices, the company says. The NI PCI-1588 interface is part of the NI family of synchronization technologies that includes sub-nanosecond PXI backplane synchronization, multi-chassis timing interfaces, and standardized software libraries.

IEEE 1588 PTP, approved in 2002, provides a standard method to synchronize devices on a network with sub-microsecond precision. The protocol synchronizes local clocks to a master clock ensuring that triggers, events and timestamps in all devices use the same time base. IEEE 1588 is optimized for well-defined distributed systems, minimal use of network bandwidth and low processing overhead. The standard has gained acceptance in the industrial automation market, NI says, and is now expanding into the test and measurement and communications markets.

Engineers can use the interface's PTP timestamps to correlate events distributed across an Ethernet network with greater precision and accuracy than available with previous industry standards, NI says. The interface uses RJ-45 Ethernet cabling and can operate as a master or slave clock module. With an onboard FPGA (field-programmable gate arrays), engineers can adjust the frequency and phase of an onboard IEEE 1588 system timer for time-stamping Ethernet packets.

For instance, adjusting the clock frequency to match other clock frequencies improves skew and adjusting the phase improves local PLL clocks and triggers, NI says; it also offers three general-purpose I/O pins and a RTSI bus connection for synchronization with traditional instruments or PLCs and other PCI plug-in devices, respectively. For example, engineers can use the new interface to create a geographically distributed data acquisition system with Ethernet while synchronizing clocks and timestamps to within 200 ns.





No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
2015 Top Plant: Phoenix Contact, Middletown, Pa.; 2015 Best Practices: Automation, Electrical Safety, Electrical Systems, Pneumatics, Material Handling, Mechanical Systems
A cool solution: Collaboration, chemistry leads to foundry coat product development; See the 2015 Product of the Year Finalists
Raising the standard: What's new with NFPA 70E; A global view of manufacturing; Maintenance data; Fit bearings properly
Special report: U.S. natural gas; LNG transport technologies evolve to meet market demand; Understanding new methane regulations; Predictive maintenance for gas pipeline compressors
Cyber security cost-efficient for industrial control systems; Extracting full value from operational data; Managing cyber security risks
Drilling for Big Data: Managing the flow of information; Big data drilldown series: Challenge and opportunity; OT to IT: Creating a circle of improvement; Industry loses best workers, again
Migrating industrial networks; Tracking HMI advances; Making the right automation changes
Understanding transfer switch operation; Coordinating protective devices; Analyzing NEC 2014 changes; Cooling data centers
Upgrading secondary control systems; Keeping enclosures conditioned; Diagnostics increase equipment uptime; Mechatronics simplifies machine design

Annual Salary Survey

After almost a decade of uncertainty, the confidence of plant floor managers is soaring. Even with a number of challenges and while implementing new technologies, there is a renewed sense of optimism among plant managers about their business and their future.

The respondents to the 2014 Plant Engineering Salary Survey come from throughout the U.S. and serve a variety of industries, but they are uniform in their optimism about manufacturing. This year’s survey found 79% consider manufacturing a secure career. That’s up from 75% in 2013 and significantly higher than the 63% figure when Plant Engineering first started asking that question a decade ago.

Read more: 2014 Salary Survey: Confidence rises amid the challenges

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role that compressed air plays in manufacturing plants.