Identifying the causes and fixes for robotic welding troubles

Five common issues and solutions to save time and money


Robotic welding systems are built for speed, accuracy, and repeatability. Knowing how to troubleshoot problems quickly and effectively can help prevent issues with quality, productivity, and costs. Courtesy: TregaskissKnowing how to troubleshoot quickly and efficiently is critical in any welding operation. For robotic welding systems it is especially important, as there is a lot at stake when something goes wrong in the process. These systems are built specifically for speed, accuracy, and repeatability. Therefore, any downtime to address problems can adversely affect the quality and productivity improvements sought by investing in the equipment. It can also lead to increased costs.

When a problem occurs with a robotic welding system, it’s valuable to identify any variables that may have recently changed. Asking questions like the following may be beneficial:

  • Has a welding operator recently reprogrammed the robot?
  • Has the robot recently been restarted after a long shutdown?
  • Have there been any changes with the consumables or robotic MIG gun?



In many cases, it may be a simple fix to get the robotic welding system back up and running. To help in the process, consider these causes and remedies for robotic welding troubles to get back to welding sooner.

Trouble 1: Poor wire feeding

There are two key causes to poor wire feeding in a robotic welding system: one, issues with the liner such as debris buildup; or two, an improperly functioning wire feeder, particularly the drive rolls. A third issue, wire cable kinking, can sometimes lead to poor wire feeding performance, too. Regardless of the cause, the result is typically the same: poor arc and weld quality. 

Remedies: To prevent and/or address issues with the liner, be certain to change out this component during routine maintenance. Doing so helps prevent debris from building up inside, either from the welding wires or the shop environment.

Using a robotic MIG gun with an “air blast” feature is also very helpful to eliminate debris. This feature blows air through the liner during scheduled downtime in the robotic welding cycle. That downtime may be during a reaming or cleaning cycle and/or during parts changeover. In the absence of an air blast feature, welding operators can also manually blow compressed air through the liner.

If a welding operator suspects that the drive rolls may be the culprits of poor wire feeding, there are two options to assess the situation. One, visually inspect the drive rolls for signs of wear. Over time, these components can become worn and may not guide the welding wire properly. The welding operator  can also conduct a “two-finger” test: Disengage the drive rolls, grasp the welding wire, and pull it through the gun. If the wire pulls through easily, it is likely that the drive rolls are the cause of the poor wire feeding. In both instances, replace the drive rolls as necessary.

Finally, look for kinks in the power cable, as these can also lead to wire feeding problems. Unwind and straighten the cable as necessary.

Trouble 2: Welds are inconsistent or off-location

Causes: Inconsistent or off-location welds are the antithesis of what companies desire from a robotic welding system. Often this problem is the result of an issue with the tool center point (TCP). TCP is the focal point of a tool; in the case of a robotic welding system, it is the location of the robotic MIG gun to the position of the welding wire in the joint (gun-to-work distance). Typically, TCP issues occur after a collision that causes the robotic MIG gun neck to bend.

Variations in part fit-up or fixturing can also cause inconsistent or off-location welds.

Remedies: To rectify issues with TCP (particularly after a collision), welding operators need to bend the neck back to the proper angle. A neck-checking fixture or neck alignment tool is the best tool for this task.  It is also important to check that the neck has been installed correctly. If the neck isn’t fully seated, it may extend too far and lead to TCP problems. Program a TCP check to verify the proper neck position to protect against future issues.

There are steps to take to differentiate between inconsistent welds caused by a TCP problem versus a part fit-up or fixture problem. First, remove the robotic MIG neck, implement a TCP check via the robotic program, and verify that everything is on-location. If everything checks out properly, the problem is likely a part or position variation.

Check that the fixturing and robot base are both securely in place—any movement in these components can cause inconsistency in the welds. Also, check for part variations and rectify these accordingly. 

<< First < Previous 1 2 Next > Last >>

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
A cool solution: Collaboration, chemistry leads to foundry coat product development; See the 2015 Product of the Year Finalists
Raising the standard: What's new with NFPA 70E; A global view of manufacturing; Maintenance data; Fit bearings properly
Sister act: Building on their father's legacy, a new generation moves Bales Metal Surface Solutions forward; Meet the 2015 Engineering Leaders Under 40
Cyber security cost-efficient for industrial control systems; Extracting full value from operational data; Managing cyber security risks
Drilling for Big Data: Managing the flow of information; Big data drilldown series: Challenge and opportunity; OT to IT: Creating a circle of improvement; Industry loses best workers, again
Pipeline vulnerabilities? Securing hydrocarbon transit; Predictive analytics hit the mainstream; Dirty pipelines decrease flow, production—pig your line; Ensuring pipeline physical and cyber security
Upgrading secondary control systems; Keeping enclosures conditioned; Diagnostics increase equipment uptime; Mechatronics simplifies machine design
Designing positive-energy buildings; Ensuring power quality; Complying with NFPA 110; Minimizing arc flash hazards
Building high availability into industrial computers; Of key metrics and myth busting; The truth about five common VFD myths

Annual Salary Survey

After almost a decade of uncertainty, the confidence of plant floor managers is soaring. Even with a number of challenges and while implementing new technologies, there is a renewed sense of optimism among plant managers about their business and their future.

The respondents to the 2014 Plant Engineering Salary Survey come from throughout the U.S. and serve a variety of industries, but they are uniform in their optimism about manufacturing. This year’s survey found 79% consider manufacturing a secure career. That’s up from 75% in 2013 and significantly higher than the 63% figure when Plant Engineering first started asking that question a decade ago.

Read more: 2014 Salary Survey: Confidence rises amid the challenges

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.