How UV-C energy works in HVAC applications: Part 2

The second installment of this three-part series explores how lamps similar to fluorescent lamps generate UV-C light.


Part 1 of this three-part series covered the nature of UV-C light and how UV-C is harnessed by lamps, which are used in HVAC systems. This installment discusses how lamps similar to fluorescent lamps generate UV-C.

UV-C lamps and lamp replacements

Figure 1: Example of the “blue hue” of a UV-C lamp installation. The intensity of the blue does not indicate the efficacy of the light. Modeling is the most accurate and efficient method to determine UV-C energy levels. Courtesy: UV ResourcesModern UV-C lamps are very similar to fluorescent lamps typically found in ceiling fixtures. Both types of lamps are manufactured on fluorescent lamp machines in similar form factors (lengths and diameters), and they operate using identical electrochemical processes: an electric discharge through argon gas strikes mercury vapor to generate a photon with a wavelength of 253.7 nm (typically called UV-C), which is invisible. 

UV-C lamps differ slightly from their fluorescent counterparts in that the UV-C lamp’s glass envelope is a highly engineered, UV-C transparent glass. This allows the 253.7 nm wavelength to transmit through the lamp envelope unfiltered. Fluorescent lamps, however, use ordinary glass that is coated with phosphors on its interior surface. The UV-C energy is contained to excite the phosphors to glow (fluoresce) in the visible light range

That being said, what gives UV-C lamps their characteristic blue hue, as shown in Figure 1?

A typical UV-C lamp produces about 90% of its energy in the UV-C wavelength. About 4% of its energy is given up as heat, and the rest (~5%) is in the visible light range that is medium blue in color. This blue color results from the argon gas in the enveolpe. 

The similarities between UV-C lamps and fluorescent lamps providemany benefits. They can be constructed on the same type of machine and in the same form factors, reducing manufacturing, packing, and shipping costs to offset much higher material costs. They can also be stored and recycled in the same manner. UV-C lamps are typically warranted to provide more than 80% of their initial output over a 9,000-hour period. Because UV-C lamps should be operated continuously, the corresponding 8,760 hours of a 24/7 schedule also fits conveniently into annual re-lamping schedules.

Attempting to run UV-C lamps longer than 9,000 hours produces individual lamp outages, so maintenance staff must monitor them routinely to know what to replace. Replacing lamps as they burn out requires a larger inventory of replacement lamps for when the lamps begin to fail in larger numbers. 

Like fluorescent lamps, UV-C lamps come in a variety of types and sizes, including single-ended and double-ended lamps. The single-ended lamps have all of the starting and ending terminals (pins) contained in the lamp base. They are used in several lamp systems, some of which allow the lamps to be inserted through a plenum or duct into the airstream, typically downstream of the cooling coil. 

Double-ended lamps have pins at both ends, come in many varieties, and are installed into specific length fixtures usually containing the ballast like a fluorescent fixture. Typically, all lamp types are available in high output (HO) and standard output (SO) varieties. The difference between them is their Watt rating and ballast size. HO lamps are usually recommended because they are less expensive on a per-lamp-Watt basis. 

Figure 2: Single-ended UV-C lamps are easily installed in commercial and residential air conditioning units. Courtesy: UV ResourcesAnother consideration is opting for encapsulated lamps, which have a transparent polytetrafluoroethylene (PTFE) coating over the glass envelope. Encapsulated lamps hermetically seal UV-C lamps in case of breakage. Should an accident occur, broken glass and mercury will remain within the lamp encapsulate.

In the last installment of this three-part feature, learn how UV-C lamps are applied within HVAC systems to clean cooling coil surfaces, drain pans, air filters, and ducts to attain and maintain “as-built” airflow conditions and indoor air quality.

Forrest Fencl is president of UV Resources. He is the writer or co-writer of 15 patents, is an ASHRAE Fellow, and formerly an ASHRAE Distinguished Lecturer. He has authored numerous papers and articles and several ASHRAE Handbook chapters related to ultraviolet air and surface treatment

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
A cool solution: Collaboration, chemistry leads to foundry coat product development; See the 2015 Product of the Year Finalists
Raising the standard: What's new with NFPA 70E; A global view of manufacturing; Maintenance data; Fit bearings properly
Sister act: Building on their father's legacy, a new generation moves Bales Metal Surface Solutions forward; Meet the 2015 Engineering Leaders Under 40
Cyber security cost-efficient for industrial control systems; Extracting full value from operational data; Managing cyber security risks
Drilling for Big Data: Managing the flow of information; Big data drilldown series: Challenge and opportunity; OT to IT: Creating a circle of improvement; Industry loses best workers, again
Pipeline vulnerabilities? Securing hydrocarbon transit; Predictive analytics hit the mainstream; Dirty pipelines decrease flow, production—pig your line; Ensuring pipeline physical and cyber security
Upgrading secondary control systems; Keeping enclosures conditioned; Diagnostics increase equipment uptime; Mechatronics simplifies machine design
Designing positive-energy buildings; Ensuring power quality; Complying with NFPA 110; Minimizing arc flash hazards
Building high availability into industrial computers; Of key metrics and myth busting; The truth about five common VFD myths

Annual Salary Survey

After almost a decade of uncertainty, the confidence of plant floor managers is soaring. Even with a number of challenges and while implementing new technologies, there is a renewed sense of optimism among plant managers about their business and their future.

The respondents to the 2014 Plant Engineering Salary Survey come from throughout the U.S. and serve a variety of industries, but they are uniform in their optimism about manufacturing. This year’s survey found 79% consider manufacturing a secure career. That’s up from 75% in 2013 and significantly higher than the 63% figure when Plant Engineering first started asking that question a decade ago.

Read more: 2014 Salary Survey: Confidence rises amid the challenges

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.