How UV-C energy works in HVAC applications: Part 1

This first of this three-part series describes UV-C light and how it is applied as a clean-up tool in all types of air conditioning systems.

11/03/2013


Figure 1: This diagram shows the electromagnetic spectrum, with a breakout of visible light segments—colors. The UV spectrum ranges from 100 to 400 nm and is invisible. Courtesy: UV ResourcesLight energy in the ultraviolet-C (UV-C) wavelength has been used extensively in HVAC equipment since the mid-1990s to improve indoor air quality (IAQ) by eliminating the buildup of biofilms and other organic contaminants on the surfaces of system components, including cooling coils, plenum interiors, drain pans, and air filters. UV-C works by disassociating elemental bonds, which in turn disinfects and disintegrates organic materials.

In new systems, such buildups are avoided by the continuous cleaning of equipment with UV-C. In retrofit applications, UV-C eradicates organic matter that has accumulated and grown over time, and then prevents it from returning.

Although UV-C is a relatively simple technology, many engineers, building owners, and other facility professionals are mystified about how UV-C works and how to apply it cost effectively. Mystification leads to mistrust. 

This three-part feature addresses the aspects of UV-C technology and the applications that seem the most awkward using ASHRAE guidelines found in Chapter 60: Ultraviolet Air and Surface Treatment in the 2011 ASHRAE Handbook – Applications. This first installment describes the nature of UV light, that is, electromagnetic radiation at a wavelength of 253.7 nanometers (nm) labeled “UV-C,” and how properties of UV-C light have been applied as a clean-up tool within all types of air conditioning systems. 

The second part will explore how UV-C light is generated by lamps that are very similar to fluorescent lamps found in commercial ceiling light fixtures. The topics of lamp life and replacement schedules also are covered to set the stage for using UV-C lamps in HVAC systems. The final installment in the series will discuss how UV-C lamps are applied within HVAC systems to clean cooling coil surfaces, drain pans, air filters, and ducts for the purposes of attaining and maintaining “as-built” cooling capacity, airflow conditions, and IAQ.

UV light comprises a segment of the electromagnetic spectrum between 400 and 100 nm, corresponding to photon energies from 3 to 124 eV. The UV segment has four sections, labeled UV-A (400 to 315 nm), UV-B (315 to 280 nm), very high energy and destructive UV-C (280 to 200 nm), and vacuum UV.

We all are familiar with the deleterious effects of UV transmitted by sunlight in the UV-A and UV-B wavelengths, giving rise to UV inhibitors, or blocking agents, which are found in glasses and lotions. We are also familiar with products engineered to withstand the effects of UV radiation, such as plastics, paints, and rubbers. However, unlike UV-A and B, the UV-C wavelength has more than twice the electron volt energy (eV) as UV-A, and it is well absorbed (not reflected) by organic substances, adding to its destructiveness. Learn more about the electromagnetic spectrum in a video from NASA

UV-C’s germicidal effects are well proven. It owes these effects to the biocidal features of ionizing radiation, that is, UV-C does far more damage to molecules in biological systems than can temperature alone. Sunburn, compared to the sensation of warmth, is one example of that damage. Sunburn is caused by sun striking living cells in the epidermis and killing them; the redness is the increased capillary action and blood flow enabling white blood cells to remove the dead cells.

Ionization drives UV-C’s power to alter chemical bonds. It carries enough energy to excite doubly bonded molecules into a permanent chemical rearrangement, causing lasting damage to DNA, ultimately killing the cell. Even a very brief exposure can render microbial replication impossible. After being killed, organic remnants are subject to photo-degradation (disintegration), a key feature of UV-C energy. 

UV-C is absorbed by the ozone layer and much of the atmosphere, and does not make it to Earth’s surface; vacuum UV resides principally outside of the atmosphere.

Exposure and consequent dosage is the quantity of UV-C light absorbed over a specific period of time. A 2010 study commissioned by ASHRAE and the Air Conditioning, Heating, and Refrigeration Institute (AHRI) found that even the most sophisticated organic compounds suffer from exposure to small dosages of UV-C energy. Because UV-C lamp installations in HVAC applications operate 24/7, time is infinite, so surface materials are both disinfected and disintegrated. Once gone, they won’t re-form as long as the lamps are maintained. 

Unlike manufactured compounds, the mostly simple organic debris as found on coil surfaces are fairly easy to degrade. And because aluminum is among the best inorganic reflectors of the UV-C wavelength, UV-C energy is easily directed deep into and throughout a cooling coil. 

The next installment in this three-part series will set the stage for using UV-C lamps to disinfect HVAC system components.


Forrest Fencl is president of UV Resources. He is the writer or co-writer of 15 patents, is an ASHRAE Fellow, and formerly an ASHRAE Distinguished Lecturer. He has authored numerous papers and articles and several ASHRAE Handbook chapters related to ultraviolet air and surface treatment



HUGH , CA, United States, 12/03/13 06:21 PM:

This article, like many, addresses the surface disinfection issue. However, from a disease transfer point of view treating the flowing air is the more demanding task, especially for microbes smaller than MERV 13 -14 can capture. The power level must be considered and must be orders of magnitude higher than the surface treatment due to the limited exposure time. It would be valuable to gather comments and guidance from experience including addressing any Ozone that may be produced with these higher power UVC disinfecting systems.
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Your leaks start here: Take a disciplined approach with your hydraulic system; U.S. presence at Hannover Messe a rousing success
Hannover Messe 2016: Taking hold of the future - Partner Country status spotlights U.S. manufacturing; Honoring manufacturing excellence: The 2015 Product of the Year Winners
Inside IIoT: How technology, strategy can improve your operation; Dry media or web scrubber?; Six steps to design a PM program
Getting to the bottom of subsea repairs: Older pipelines need more attention, and operators need a repair strategy; OTC preview; Offshore production difficult - and crucial
Digital oilfields: Integrated HMI/SCADA systems enable smarter data acquisition; Real-world impact of simulation; Electric actuator technology prospers in production fields
Special report: U.S. natural gas; LNG transport technologies evolve to meet market demand; Understanding new methane regulations; Predictive maintenance for gas pipeline compressors
Warehouse winter comfort: The HTHV solution; Cooling with natural gas; Plastics industry booming
Managing automation upgrades, retrofits; Making technical, business sense; Ensuring network cyber security
Designing generator systems; Using online commissioning tools; Selective coordination best practices

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role that compressed air plays in manufacturing plants.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me