How to use NFPA 99

There are many changes to NFPA 99-2012. Engineers should review the code carefully to better understand how it affects electrical systems, risk assessments, and other pertinent topics.

06/17/2013


Do the recent changes in NFPA 99: Health Care Facilities Code require isolation panels in all operating rooms?

NFPA 99-2012 has so many changes throughout the document that the committee decided to forgo the usual markers that indicate a change. Several of the code changes are relocated sections to improve organization. However, there is an obvious philosophical shift within the code.

This shift is apparent within the new text of Chapter 4 (formerly Electrical Systems). It’s apparent that risk assessment procedures are going to play a more formal role in certain code interpretations. Unfortunately, when someone asks you, “Does that meet code?” the technically correct answer is going to be “It depends on the risk assessment.”

So what does risk assessment/risk probability all mean?

NFPA 99 doesn’t give a lot of firsthand guidance on a “defined risk assessment procedure” other than giving the four categories of risk (NFPA 99-2012 Section 4.1) and a reference to ISO/IEC 31010, NFPA 551: Guide for the Evaluation of Fire Risk Assessments, and SEMI S10-0307E. These documents contain some new concepts for the design engineer to consider, which are strongly encouraged for reading.

For some reason, the average person tends to think of risk probability in terms of his or her chance of getting hit by lightning (1 in 700,000 per year, or 0.000001% chance of being hit). Even though it’s not the engineer’s role to interpret or conclude for a facility what an “acceptable” risk level is, it’s always useful to have a reference benchmark when asked “What does that mean?”

Chapter 6 is now dedicated to Electrical Systems; it’s nearly a duplicate of NFPA 99-2005 Chapter 4. However, NFPA 99-2012 Section 6.3.2.2.8.4 now states, “Operating rooms shall be considered to be a wet procedure location, unless a risk assessment conducted by the health care governing body determines otherwise.”

The appendix A.6.3.2.2.8.4 also states, “In conducting a risk assessment, the health care governing body should consult with all relevant parties, including, but not limited to, clinicians, biomedical engineering staff, and facility safety engineering staff.”

Depending on your personal bias, this is clear and conclusive proof that:

  1. All new operating rooms should be considered wet locations and as such should be equipped with an isolated power system, OR
  2. Isolated power systems are not required in any new operating rooms, as long as the facility performs a risk assessment and that the risk is relatively low.

Engineers typically stick to the facts, but it’s worth stressing that there is a great deal of debate about this change in the code.

What is a wet location?

The American Society for Healthcare Engineering (ASHE) has come out with a statement clearly articulating its objection to classifying all operating rooms as wet locations (see their white paper titled, “NFPA 99: How to Conduct Operating Room Risk Assessments”). ASHE relates the ongoing struggle on this issue back to 1970 and articulates a general methodology for conducting a risk assessment based on empirical measurements of existing operating rooms. Unfortunately, most engineers do not have access to an existing operating room for empirical testing. If you have a fully engaged owner/client, this is a good document to read.

There is also a well-written article issued by the Fire Protection Research Foundation, “Operating Rooms as Wet/Dry Locations Risk Assessment Project” (Brenton Cox, PhD, Exponent Inc., 2012). The article does a good job of identifying a mathematical model for the general terms outlined in NFPA 99.

Since most consultants are conservative and risk averse, the majority will gravitate toward conclusion Number 1 described above. However, like all things in our profession, it’s not going to be that simple. As clients become more cognizant of this issue, they will start asking, “Do I really need isolated power in all of my operating rooms?” or “I spoke with my colleague and he doesn’t have isolation panels, why do I need them?” or “Can you perform a risk assessment for me?”

Because I’ve been down this road, I’m going to share with you what I’ve learned and how you can use it with your clients.


<< First < Previous Page 1 Page 2 Next > Last >>

The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
A new approach to the Skills Gap; Community colleges may hold the key for manufacturing; 2017 Engineering Leaders Under 40
Doubling down on digital manufacturing; Data driving predictive maintenance; Electric motors and generators; Rewarding operational improvement
2017 Lubrication Guide; Software tools; Microgrids and energy strategies; Use robots effectively
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Power system design for high-performance buildings; mitigating arc flash hazards
Research team developing Tesla coil designs; Implementing wireless process sensing
Commissioning electrical systems; Designing emergency and standby generator systems; Paralleling switchgear generator systems

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me