How to specify an arc flash relay

Engineers must consider arc flash prevention in the electrical systems that supply power for HVAC, elevators, plant machinery, and other high-power equipment.

03/28/2013


As awareness grows of the extreme danger of arc flash hazards for electrical and maintenance workers, and in response to greater focus on arc flash from OSHA and NFPA 70E, building designers are being asked to consider arc flash prevention in the electrical systems that supply power for HVAC, elevators, plant machinery, and other high-power equipment. 

One approach is to specify arc flash relays to be installed inside electrical cabinets. These relays detect the light of an emerging arc flash in <1 ms and send a trip signal to the shunt trip of an upstream device such as a circuit breaker. This article will explain arc flash relays and the considerations for their selection, such as fault current at the panel, trip time, sensor placement, and zones.

Arc flash defined

An arc flash is a sudden release of energy caused by an energized conductor shorting to either ground or another phase. It can be caused by a dropped tool, something as apparently harmless as a misplaced test probe, or by a ground fault that escalates into an arc flash. 

Arc flash events can also be prevented by ground fault relays and resistance grounding systems, which will protect against faults resulting from a phase coming in contact with ground, but they will not protect in an event where a phase comes in contact with another phase. 

Generally speaking, an arc flash is possible on systems operating at voltages from 300 V and above. However, arc flash incidents at 208 V have occurred when the available fault current was very high, including in high-rise buildings and older commercial buildings where 208 V is used instead of 480 V. An arc flash that lasts for 10 ac cycles on a 480 V system with 25 kA available fault current releases as much energy as detonating 2 lbs of TNT. 

It produces a blast wave that can smash equipment cabinets, damage or destroy a person’s hearing, collapse lungs, and in some cases fling a victim across a room. It can propel debris and blobs of molten metal at ballistic speeds. It also produces an intense flash of light—ranging from ultraviolet through infrared—that can cause third-degree burns on exposed body parts within a fraction of a second. After the blast, wiring insulation and other components may be on fire, creating toxic smoke. The danger of arc flash is the reason that personnel working on energized electrical panels are required to wear cumbersome flash-resistant personal protective equipment (PPE) and electrical panels must be carefully labeled with information on safe approach distance and level of PPE required.

Preventing arc flash

Fig. 1: Damage from an arc flash increases rapidly with time, and the faster the current can be shut off, the less damage there will be. Courtesy: LittelfuseBecause workers cannot be counted on to de-energize equipment or follow all safety procedures, it falls to the system designer to mitigate arc flash hazards. The key is to minimize the available energy. As shown in Figure 1, damage from an arc flash increases rapidly with time, so the faster the system can clear the fault, the less damage there will be. 

One way to defend against arc flash is to retrofit electrical cabinets with arc flash relays, which reduce arc duration by sending a trip signal to the upstream device faster than conventional over-current relays, thus limiting the incident energy and protecting workers from hazards. In many cases, the protection provided by an arc flash relay can reduce the level of PPE required for compliance with NFPA 70E safety standards and OSHA workplace safety requirements.


<< First < Previous 1 2 3 Next > Last >>

HORMAZ , IL, United States, 04/20/13 04:04 PM:

Small services do not have
relay operated circuit breakers, so how do you plan
to trip this breaker other than its normal function?
At what point does this type
of protection become mandatoty?
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.