How to get the most from your infrared camera investment

Infrared (IR) thermography is a fundamental asset in today’s predictive maintenance (PdM) and condition monitoring programs.


By Leonard A. Phillips, FLIR Systems, North Billerica, MA

Infrared (IR) thermography is a fundamental asset in today’s predictive maintenance (PdM) and condition monitoring programs. How can you ensure that the IR camera system you buy will meet your current and future needs and yield maximum return on investment? Purchasing the right infrared camera can yield a total payback in a single incident.

However, purchasing on price alone can be a waste of time and money, or worse — it can compromise your plant’s reliability or safety.

Choosing the right infrared camera for your application requires understanding the full range of target variables, which include size, distance, infrared characteristics, and environmental factors. It also requires understanding these target parameters in terms of camera sensitivity, resolution, and overall accuracy.

Why measure temperature?

The temperatures and changing temperatures over time of electrical and mechanical targets in your plant serve as the basis for your condition status reports and for actions that you recommend. This could mean anything from no problems noted to tightening a fuse or shutting the factory down to avoid a potential fire or explosion. Your name is on your reports. The credibility of your PdM program, and sometimes the safety of your facility, depends on the accuracy of the data behind your recommendations.

How much accuracy do you need? How much can you afford?

An IR camera must deliver accurate temperature measurements over a wide range of ambient conditions. If a voltmeter gave incorrect answers in hotter or colder parts of your facility, you would throw it away.

Likewise, if an infrared camera produces temperature measurements that vary with ambient temperature, or cannot measure some of the more challenging targets in your facility, it is not a good value at any price.

Measurement resolution is extremely critical to accuracy and can be described as the smallest target spot size whose temperature can be reliably and accurately measured by the camera. The farther the operator moves away from a target, the smaller the target appears and the more challenging it is to accurately measure.

Taken a step further, measurement resolution is the ability of the camera to accurately measure the temperature of a certain diameter target spot at a particular distance. The ratio of the maximum distance at which a camera can accurately resolve and measure a minimum spot size to the spot size itself is called the camera’s maximum distance-to-spot size ratio or simply spot-size ratio. Cameras that have interchangeable lenses can change their spot size ratio by changing camera optics. That’s why PdM applications in most facilities require lens interchangeability.

The camera optics project the image in their field of view onto the focal plane array (FPA) detector. The FPA detector converts the projected image into an electrical signal, which is interpreted by the camera’s scanning and processing electronics as a thermographic image. In practical terms, the bigger the projected image of a target of interest is, the more accurately it can be measured. As a result, a telescopic lens is required to magnify distant objects and a wide-angle lens is needed to focus on nearby objects or to survey large areas quickly.

If the same camera must be used to inspect an electrical connection on a utility pole 40 ft away and a section of 16-gauge wire in close quarters that require the camera to be only 18 in. away, different lenses are required to accommodate both targets. That’s why lens interchangeability is a must-have capability.

Try before you buy

Camera specifications are generated under laboratory conditions. To confirm that a camera system performance meets your needs, insist on a demonstration at your facility and on typical targets — and ideally in the hands of your own thermographer. Use the camera on targets that truly test its performance. Test it on small, distant targets as well as on hot and cold targets. Use it in hot and cold areas to be sure it can deliver accurate measurements under different ambient conditions. Your reputation and the health and safety of your facility depend on your decision.

Description of lenses

The following images of a utility disconnect were taken from the same position and camera. Each image was produced using a different lens as indicated:

7 deg field of view — extreme telescopic with minimum working distance of 19.69 ft

12 deg field of view — telescopic with minimum working distance of 6.56 ft

24 deg field of view — standard with minimum working distance of 1.64 ft

45 deg field of view — wide angle with minimum working distance of 0.66 ft

80 deg field of view — very wide angle lens with minimum working distance of 0.66 ft

Note: All lenses can focus on targets from the minimum working distance to infinity.

Be sure to choose a camera system that can focus and resolve targets at your actual working distances. Compare the minimum working distances and the relative magnification of the target taken by the different lenses.

To accommodate small nearby objects as well as similar objects at much greater distances, a camera system that includes interchangeable lenses is a must.

The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
Doubling down on digital manufacturing; Data driving predictive maintenance; Electric motors and generators; Rewarding operational improvement
2017 Lubrication Guide; Software tools; Microgrids and energy strategies; Use robots effectively
Prescriptive maintenance; Hannover Messe 2017 recap; Reduce welding errors
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Research team developing Tesla coil designs; Implementing wireless process sensing
Commissioning electrical systems; Designing emergency and standby generator systems; Paralleling switchgear generator systems
Natural gas engines; New applications for fuel cells; Large engines become more efficient; Extending boiler life

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me