How Ethernet Works

Ethernet is a local area network (LAN) technology with networks traditionally operating within a single building, connecting devices in close proximity. At most, Ethernet devices should have only a few hundred yards of cable between them. For two devices on a network to successfully communicate, they must both understand the same protocol.

05/13/2002


Ethernet is a local area network (LAN) technology with networks traditionally operating within a single building, connecting devices in close proximity. At most, Ethernet devices should have only a few hundred yards of cable between them.

For two devices on a network to successfully communicate, they must both understand the same protocol. Ethernet follows a simple set of rules that govern its basic operation. To better understand these rules, it is important to understand Ethernet terminology.

  • Medium —a path along which the electronic signals travel.

  • Segment —a single shared medium.

  • Node —a device that attaches to a segment.

  • Frame —variably sized chunks of information.

    • The Ethernet protocol specifies a set of rules for constructing frames. There are explicit minimum and maximum lengths for frames, and a set of required information that must appear in the frame. Each frame must include destination and source addresses, which identify the recipient and the sender of the message. The address uniquely identifies the node. No two Ethernet devices can have the same address. Since a signal on the Ethernet medium reaches every attached node, the destination address is critical to identify the intended recipient of the frame. A frame with a broadcast address is intended for every node on the network.

      "Carrier sense multiple access with collision detection" (CSMA/CD) is how the Ethernet protocol regulates communication among nodes. "Multiple access" means that when one Ethernet station transmits, all the stations on the medium hear the transmission. "Carrier sense" means that before a station transmits, it "listens" to the medium to determine if another station is transmitting. If the medium is quiet, the station recognizes that this is an appropriate time to transmit.

      Ethernet nodes listen to the medium while they transmit to ensure that they are the only station transmitting at that time. If the stations hear their own transmission returning garbled, then they know that a collision occurred. A single Ethernet segment is sometimes called a collision domain because no two stations on the segment can transmit at the same time without causing a collision. When stations detect a collision, they cease transmission, wait a random amount of time, and attempt to transmit when they detect silence on the medium.

      The random pause and retry is an important part of the protocol. If two stations collide when transmitting once, then both will need to transmit again. At the next appropriate chance to transmit, both stations involved with the previous collision will have data ready to transmit. If they transmitted again at the first opportunity, they would most likely collide, and continue to collide indefinitely. Instead, the random delay makes it unlikely that any two stations will collide more than a few times in a row.


      Modern Ethernet networks use twisted pair wiring or fiber optics to connect stations in a radial pattern. Although legacy Ethernet networks transmitted data at 10 megabits per second (Mbps), modern networks can operate at 100 or even 1000 Mbps.

      Switched networks replace the shared medium of legacy Ethernet with a dedicated segment for each station. These segments connect to a switch, which acts much like an Ethernet bridge. Some switches today can support hundreds of dedicated segments. Since the only devices on the segments are the switch and the end station, the switch picks up every transmission before it reaches another node. The switch then forwards the frame over the appropriate segment. But since any segment contains only a single node, the frame reaches only the intended recipient. This feature allows many transmissions to occur simultaneously on a switched network.

      Full duplex refers to the ability to send and receive data at the same time. Legacy Ethernet is half duplex. In a switched network, nodes communicate only with the switch and never directly with each other. Switched networks also employ twisted pair or fiber optic cabling, both of which use separate conductors for sending and receiving data. In this type of environment, Ethernet stations can forgo the collision detection process and transmit at will, since they are the only potential devices that can access the medium. This ability allows end stations to transmit to the switch at the same time that the switch transmits to them, achieving a collision-free environment.



The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
Doubling down on digital manufacturing; Data driving predictive maintenance; Electric motors and generators; Rewarding operational improvement
2017 Lubrication Guide; Software tools; Microgrids and energy strategies; Use robots effectively
Prescriptive maintenance; Hannover Messe 2017 recap; Reduce welding errors
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Research team developing Tesla coil designs; Implementing wireless process sensing
Commissioning electrical systems; Designing emergency and standby generator systems; Paralleling switchgear generator systems
Natural gas engines; New applications for fuel cells; Large engines become more efficient; Extending boiler life

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me