Handling a nuisance trip

The main 4,000 amp service breaker associated with a research and development facility has experienced a number of unexplained trips.


View the full story , including all images and figures, in our monthly digital edition .

The main 4,000 amp service breaker associated with a research and development facility has experienced a number of unexplained trips. A power monitor was installed on the service to determine if the cause of the circuit breaker's operation was the result of a fault condition in the building's electrical distribution, a utility supply issue, or a problem with the electronic control circuitry (trip unit). Because the building was undergoing a significant remodel, the general consensus was that there was a wiring problem introduced during the construction activity.

A Dranetz-BMI PowerGude 4400 (PG4400) power monitor was connected to the load side of the 4,000 amp circuit breaker. Voltage connections for phases A and C were connected to the utility supply side of the breaker, and phase B was connected to the load side; this configuration ensures that the event capture anytime the breaker trips. LEMFlex RR3035 current probes were installed on the respective phases and neutral to document current levels at the time of event capture. The PG4400 was configured for cross-channel triggering, i.e., any event trigger will result in all voltage and current changes being recorded.

Key findings

Three significant events were recorded during the monitoring period. A graphical summary of the events is shown in Figure 1. Two of the events were associated with a trip of the problem breaker. The other event was a utility sourced sag, most likely the result of fault clearing operations somewhere in the utility distribution system. The following is a summary of the significant events:

  • Event #104 on Tuesday at 8:13 a.m. (see Figure 2)

  • Event #687 on Saturday at 6:53 a.m., first breaker trip (see Figure 3)

  • Event #808 on Sunday at 2:12 a.m., second breaker trip (see Figure 4).

In addition to the three significant events, the monitor data revealed other sag-related events, one utility sourced and, most likely, two load turn-on events. These events were not sufficient to cause an event trigger of the PG4400. The following is a summary of these lesser events:

  • Utility sag between 1:30 and 1:40 p.m. on Wednesday

  • Load sag between 12:30 and 12:40 p.m. on Thursday

  • Load sag between 4:30 and 4:40 p.m. on Thursday.

Utility sourced voltage sag

The voltage sag shown in Figure 2 is typical of a utility fault clearing operation. The duration is five to six cycles, and both the voltage and current decrease indicating a utility sourced fault. Phase C was the most impacted and decreased to approximately 241 Vac during the sag. Most rotating equipment will ride through these types of events, but some electronic loads (tools) may respond the short duration voltage sag.

Typical solutions for equipment impacted by these types of events would be some type of voltage regulation or voltage support (uninterruptible power supply or some other type of energy storage device).

Circuit breaker operation

Figures 3 and 4 show the circuit conditions at the time of the two breaker operations (trips).

In both cases, the pre-trigger waveform data show no abnormal current surges that would account for the operation of the breaker either from a phase-to-phase or ground fault condition.

Zero sum calculations of the monitoring data do not show any significant current that could account for the breaker's unplanned operation. It is as though it (or someone) just turned the breaker off.

Based on the data from the two recorded breakers operations, the most likely cause is the breaker's electronic trip circuitry.

The suspect 4,000 amp circuit breaker is equipped with additional control/diagnostic electronics that can provide state and fault conditions on breaker trips. The additional electronics requires an optional power supply to provide the additional functions. The circuit breaker will operate without the additional power supply, but will not provide any state or fault conditions information in the event of a breaker operation. In this case, the 4,000 amp circuit breaker was not equipped with the optional power supply.

The circuit breaker and associated trip circuitry were tested and found to be in satisfactory operating condition. Discussions with the manufacturer's applications support group revealed that using the circuit breaker, without the optional power module, under low load conditions with harmonics present can result in nuisance tripping.

The breaker in question was carrying 300 to 400 amps of current at the time of the breaker trips. Also, from the current waveform, it is apparent that harmonics are present.

Figure 5 shows the current time plot versus the third, fifth, and seventh harmonics. Both of the trips coincided with lower current levels and slightly elevated harmonic levels. The fifth and seventh harmonics are actually increasing as a percentage of the fundamental, which is a function of the types of loads remaining in operation. Apparently, the unpowered control circuitry responds under these somewhat unusual conditions.

The breaker had been in service for quite some time without an incident, and the low current (load) levels were the result of the remodeling activity. This appears to be an example of “Murphy's Law”: if anything can go wrong, it will.

Operating a 4,000 amp circuit breaker at only a few hundred amps is an unusual situation brought about by the remodeling/construction activity, coupled with some load generated harmonics—not all that unusual—and the decision not to implement the breaker's electronic features on the original installation. These factors created the “perfect storm” for this situation to develop.

Once the problem was identified, then the most cost-effective solution would be to install the power supply for the circuit breaker's electronics, which should resolve the problem.

Author Information

Lonie is president and a co-founder of PowerCET Corp., Santa Clara, Calif. Previously, he was vice president of ONEAC Corp. and product support manager for the telecommunications division of ROLM Corp. His experience with GTE included operations, customer support, and engineering management positions. A recognized expert in the evaluation of power and grounding problems for the data and telecommunications industries, Lonie has written two books and regularly publishes articles on power quality and the electromagnetic environment. He is co-publisher of PQToday and serves on the editorial advisory board for Power Quality Assurance Magazine. He is a graduate of the University of Redlands, a member of IEEE, and has more than 30 years of experience in computer and telecommunications service and equipment protection.

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.