Growing the next generation

Too many companies have lost their capacity to train inexperienced engineers. How can we hope to replace the practical knowledge lost to retirement?

05/28/2013


A lot has been written lately about the shortage of candidates for positions in the process control field and how we’re going to grow the next generation of process control engineers and technicians. As with a lot of other careers, companies have grown accustomed to being able to pick and choose between candidates in recent years. That is coming to an end as more and more of my contemporaries finally decide to retire and as more and more of the installed base of control systems become terminally obsolete. Corporations have also gotten used to doing more with fewer people. The problem is that those they kept have their hands full just keeping things running. There’s no time to teach new people how to do the work.

We’d like to believe that if we just hire from the right engineering disciplines that we won’t have to train, but the reality is that the curricula in our universities do not teach much of what’s needed in the practical application of process control to a single discipline. Chemical engineering grads have been exposed to process design, so they have the tools to do some of the work, but if they’ve been exposed to process control, it is generally a theoretical approach. If the ChEs have been exposed to the electrical engineering curriculum, it amounts to just that, exposure. Electrical engineering grads are to some degree even more disadvantaged because if they’ve taken a controls course, it has focused on servo control and again the theoretical approach of Laplace transforms and Bode plots. The EE grads often have the added disadvantage of very little exposure to industrial processes. They may or may not get exposed to high voltage devices, thermodynamics, and fluid mechanics, though they may take survey courses of these topics. Mechanical engineers are in a similar boat as EEs since they may or may not get any process engineering along with their courses in fluids and thermodynamics and will have only taken an EE survey course and a freshman chemistry course.

Being a mechanical engineer, I had to learn how to design control circuits properly including motor control circuits. That included understanding issues around proper grounding techniques, which became even more problematic with the early DDC and DCSs because of their sensitivity to noise. I also had to learn proper methodology for installing instrument impulse lines, something no conventional curriculum teaches, nor do they teach how to select measuring devices. Which curriculum teaches you why you should always start large fans against a closed damper? Which teaches you why the pressure and flow measurements in the boiler’s main steam line should always come off the side of the pipe? Which teaches the advantage of a thermocouple over an RTD that has nothing to do with accuracy or range? (Hint: which one can be “fixed” with a hammer at 2:00 am?) Which teaches the design of failsafe circuits? These are the kinds of things that I mean when I speak of the practical application of process control. Such things can only be taught effectively on the job and, in some cases, through direct experience of what happens when you do it wrong.

So, what are your arcane bits practical process controls that you’ve learned over the years? What do you think is the best way to impart those gems of knowledge to the next generation? How can you convince your company that they have to train new grads on more than the company culture and HR policies?

This post was written by Bruce Brandt, PE. Bruce is the DeltaV technology leader at MAVERICK Technologies, a leading system integrator providing industrial automation, operational support, and control systems engineering services in the manufacturing and process industries. MAVERICK delivers expertise and consulting in a wide variety of areas including industrial automation controls, distributed control systems, manufacturing execution systems, operational strategy, and business process optimization. The company provides a full range of automation and controls services – ranging from PID controller tuning and HMI programming to serving as a main automation contractor. Additionally MAVERICK offers industrial and technical staffing services, placing on-site automation, instrumentation and controls engineers.



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.