Grounding requires more

We need to raise awareness about the realities of grounding and its environmental effects. With the preference going to some form of nonmetallic piping, the cold water pipe grounding electrode has almost disappeared from new buildings. This article will discuss: By raising the awareness of these sometimes overlooked factors, everyone involved will benefit from have a better grounded system.

06/01/2008


We need to raise awareness about the realities of grounding and its environmental effects. With the preference going to some form of nonmetallic piping, the cold water pipe grounding electrode has almost disappeared from new buildings.

This article will discuss:

  • Resistance to ground

  • Ground electrodes

  • Ground depth

  • Soil resistivity

  • Resistance to ground calculations

  • Temperature effects on resistance to ground

  • Reduction of resistance to ground with multiple ground rods.

By raising the awareness of these sometimes overlooked factors, everyone involved will benefit from have a better grounded system. The inspector will see more enhanced grounding being specified and designed and may question implementation all of the factors discussed above. The inspector and contractor will be involved in the building process sooner with Ufer grounds.

While Ufer grounds are not covered here, a short description is in order. The principle is simple: The Ufer ground takes advantage of concrete’s properties. Concrete absorbs moisture quickly and looses moisture slowly. The mineral properties of concrete (lime and others) and their inherent pH means concrete has a supply of ions to conduct current. The soil around concrete becomes “doped” by the concrete. As a result, the pH of the soil rises and reduces what would normally be 1,000-ohm meter soil conditions (hard to get a good ground). The moisture present, in combination with the “doped” soil, make a good conductor for electrical energy or lightning currents.

The contractor will be expected to do more testing and provide test results for a baseline for future reference for the high-tech facilities. The engineer will certainly add grounding requirements to the sensitive electronic high-tech projects based on information listed in the factors above.

RESISTANCE TO GROUND

The National Electrical Code (NEC) states that resistance to ground is for safety, but is not necessarily efficient, convenient, or adequate for good service of future expansion of electrical use. For the most part, everyone agrees grounding must meet the NEC. The NEC establishes a presumably acceptable level of resistance to ground as 25 ohms or less.

IEEE Standard 1100-2005, “Recommended Practice for Powering and Grounding Electronic Equipment,” indicates that in special applications like data processing, telephone switches, and medical modules like MRI, CT, and other sophisticated medical equipment, 5 ohms or less is required by the manufacturer’s written recommendations for the values of resistance to ground.

Acceptable grounding electrodes are plates, rods, pipes, concrete-encased electrode, metallic underground water pipe, and the building’s steel. Economics almost always plays into the design for the best value for the best results. In trying to compare ground rod and ground plates, I made phone calls for pricing grounding plates. In my area, no one could even remember selling a grounding plate electrode. IEEE Standard 142 indicates that ground plates can be buried either horizontal or vertical on edge and is the preferred method because a minimum of excavation is required. For plates of 10 to 20 sq. ft, the optimum burial depth is about 8 ft. However, IEEE Standard 1100 Chapter 9, “Telecommunications, Information Technology, and Distributed Computing,” list examples of approved grounds, and the ground plate is not listed.

GROUND DEPTH

Where there is insufficient real estate to work with, or under conditions of unusually high ground resistivity, deep grounds may be required. Long copper pipe-type ground rods, sometimes tens or hundreds of feet long in bored holes are not unheard of, but are rare. In mountaintop locations, for example, in order to achieve the target ground resistance value, it may be more economical to bore a deep ground than to spread out a shallow ground system over rocky terrain or steep slopes.

Generally speaking, deeper ground rods are more effective than shallow rods, so a 20-ft. rod is preferred to a 10-ft. rod, and so on. Figure 1 shows that resistance falls quickly as rod length increases, due to more stable temperatures and increased moisture at lower depths.

Electrode spacing is also important. The general rule of thumb is that multiple rods should be spaced apart at least twice the length of one rod. That is, two 10-ft. rods should be placed no closer than 20 ft. apart. From the graph for a grounding rod, one can see that if the single ground rod is 8 ft. long, then its resistance to ground is an unknown value. When two 10-ft.-long ground rods are stacked and driven one on top of the other, then the resistance may be about 20 ohms. This assumes the soil resistivity matches the chart.

SOIL RESISTIVITY

IEEE Standard 142-1991 Table 10, “Resistivity of Soils and Resistance of Single Ground Rods,” shows the different soil types and the different soil associated resistivities. This is shown in Table 1 on page 21.

The range is staggering, from 1,000 ohms cm for inorganic clays of high plasticity to 250,000 ohms cm for poorly graded gravels, gravel sand mixtures, little or not fines. The table shows for the same two extremes a single 5/8-in. by 10-ft. ground rod resistance ranges from 3 to 750 ohms. The NEC does not address directly any value of soil resistivity.

RESISTANCE TO GROUND CALCULATIONS

The International Assn. of Electrical Inspectors (IAEI) “Soares Book on Grounding” indicates the theoretical resistance to ground can be calculated based on a general resistance formula, where resistance equals the resistivity of the earth times the quotient of the length of the conducting path divided by the cross-sectional area of the path. Refer to IEEE Standard 142 Table 13 formulas for the calculations of resistance to ground, where you will note each formula is based on the installed ground rods configuration. Because the earth’s resistivity is neither uniform nor consistent, a simple and direct method of measuring earth resistance is needed.

The NEC does address locating the electrodes in moist locations away from the building. The typical specified distance from the building is beyond the drip line or beyond the gutters. IEEE Standard 142-1991 Table 11, “Effect of Moisture Content on Soil Resistivity,” shows with a low moisture content of 2% by weight sandy loam soil resistivity of approximately 185,000 ohms. At 24% moisture content the same soil resistivity is near 7,000 ohms. This is shown in Table 2 at the right.

TEMPERATURE EFFECTS ON RESISTANCE TO GROUND

IEEE Standard 142-1991 Table 12, “Effect of Temperature on Soil Resistivity,” shows the relationship of soil resistivity and soil temperature. At -5 C, the resistivity can be as high as 70,000 ohms cm. At 50 C, the resistivity is shown for the same soil to be 4,000 ohms cm. See Table 3 on page 22.

The resistivity will be seasonal; winter is the worst. Most contractors will provide a second electrode/ground rod as allowed by code in lieu of doing insulation resistance testing. Master type specifications appear to be based upon what is allowable by the NEC.

REDUCING RESISTANCE TO GROUND WITH MULTIPLE GROUND RODS

IEEE Standard 142-1991 Table 14, “Multiplying Factors for Multiple Rods,” shows how many additional ground rods are required to reduce the resistance to ground. The section and table shows that with two rods the equivalent resistance is approximated with the starting resistance divided by number of rods used and multiplied by the factor in the table. See Table 4 on page 22.

Using the 750 ohms from above in properly graded gravel as a starting point, with one ground rod and adding 23 more results in the following: (750/24) x 2.16 = 67.5 ohms. Working from the desired results of 25 ohms = (277/24 x 2.16). Best application of using 24 ground rods would probably be in a ground ring around the building.

CONCLUSION

With the growth of high-tech facilities with sensitive electronics, one will see the 5-ohm resistance value as the new target for grounding system. The engineer will need the soil resistivity numbers for the facility. More complex or enhanced grounding systems will be designed. Contractors will have more challenges and may be required to include test equipment in his or her arsenal of tools. Inspectors will inspect many of the grounding components as they are installed. Owners will benefit by having a good grounding system because their computers will work better, health care equipment will work better, and telecommunication systems will work better.

Soil Description

Group Symbol*

Average Resitivity (ohms cm)

Resistance of 5/8 in x 10 ft. rod

* The terminology used in these descriptions is from the United Soil Classifications and is a standard method of describing soils in a geotechnical or geophysical report.
† These soils classification resistivity results are highly influenced by the presence of moisture.

Well graded gravel, gravel-sand mixtures, little or no fines

GW

60,000%%MDASSML%%100,000

180-300

Poorly graded gravels, gravel-sand mixtures, little or no fines

GP

100,000-250,000

300-750

Clay gravel, poorly graded gravel, sand-clay mixtures

GC

20,000-40,000

60-120

Silty sands, poorly graded sand-silts mixtures

SM

10,000-50,000

30-150

Clay sands, poorly graded sand- clay mixtures

SC

5,000-20,000

15-60

Silty or clay fine sands with slight plasticity

ML

3,000-8,000

9-24

Fine sandy or silty soils, elastic silts

MH

8,000-30,000

24-90

Gravelly clays, sandy clays, silty clays, lean clays

CL

2,500-6,000†

17-18†

Inorganic clays of high plasticity

CH

1,000-5,500†

3-16†


Moisture Content (% by weight)

Top Soil

Resistivity (ohms cm) Sandy Loam

Red Clay

2

no data

185,000

no data

4

no data

60,000

no data

6

135,000

38,000

no data

8

90,000

28,000

no data

10

60,000

22,000

no data

12

35,000

17,000

180,000

14

25,000

14,000

55,000

16

20,000

12,000

20,000

18

15,000

10,000

14,000

20

12,000

9,000

10,000

22

10,000

8,000

9,000

24

10,000

7,000

8,000


Temperature (C)

Resistivity (ohms-cm)

-5

70,000

0

30,000

0

10,000

10

8,000

20

7,000

30

6,000

40

5,000

50

4,000


Number of Rods

Factor

2

1.16

3

1.29

4

1.36

8

1.68

12

1.80

16

1.92

20

2.00

24

2.16


Author Information

Ostendorf is Senior Electrical Engineer, Senior Associate, ME Group, Omaha.




No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.