Getting a charge out of water droplets

Water condensing and jumping from a superhydrophobic surface can be harnessed to produce electricity.


The experimental chamber setup is seen from the front, with high speed camera looking into the chamber from the left. Courtesy: Nenad Miljkovic and Daniel J. PrestonLast year, MIT researchers discovered that when water droplets spontaneously jump away from superhydrophobic surfaces during condensation, they can gain electric charge in the process. Now, the same team has demonstrated that this process can generate small amounts of electricity that might be used to power electronic devices.

The new findings, by postdoc Nenad Miljkovic, associate professor of mechanical engineering Evelyn Wang, and two others, are published in the journal Applied Physics Letters.

This approach could lead to devices to charge cellphones or other electronics using just the humidity in the air. As a side benefit, the system could also produce clean water.

The device itself could be simple, Miljkovic said, consisting of a series of interleaved flat metal plates. Although his initial tests involved copper plates, he says any conductive metal would do, including cheaper aluminum.

In initial testing, the amount of power produced was vanishingly small — just 15 picowatts, or trillionths of a watt, per square centimeter of metal plate. But Miljkovic says the process could easily be tuned to achieve at least 1 microwatt, or millionth of a watt, per square centimeter. Such output would be comparable to that of other systems that have been proposed for harvesting waste heat, vibrations, or other sources of ambient energy, and represents an amount that could be sufficient to provide useful power for electronic devices in some remote locations. [... including Internet of things (IoT) applications.)

For example, Miljkovic has calculated that at 1 microwatt per square centimeter, a cube measuring about 50 centimeters on a side — about the size of a typical camping cooler — could be sufficient to fully charge a cellphone in about 12 hours. While that may seem slow, he says, people in remote areas may have few alternatives.

There are some constraints: Because the process relies on condensation, it requires a humid environment, as well as a source of temperatures colder than the surrounding air, such as a cave or river.

The system is based on Miljkovic and Wang's 2013 finding — in attempting to develop an improved heat-transfer surface to be used as a condenser in applications such as power plants — that droplets on a superhydrophobic surface convert surface energy to kinetic energy as they merge to form larger droplets. This sometimes causes the droplets to spontaneously jump away, enhancing heat transfer by 30 percent relative to other techniques. They later found that in that process, the jumping droplets gain a small electric charge — meaning that the jumping, and the accompanying transfer of heat, could be enhanced by a nearby metal plate whose opposite charge is attractive to the droplets.

Images from a field emission scanning electron microscope show (left) an oxidized copper-oxide surface and (right) a copper-oxide surface with a 30 nanometer thick hydrophobic coating. The inset images show a water droplet on the surface: At left, the dro

Now the researchers have shown that the same process can be used to generate power, simply by giving the second plate a hydrophilic surface. As the droplets jump, they carry charge from one plate to the other; if the two plates are connected through an external circuit, that charge difference can be harnessed to provide power.

In a practical device, two arrays of metal plates, like fins on a radiator, would be interleaved, so that they are very close but not touching. The system would operate passively, with no moving parts.

For powering remote, automated environmental sensors, even a tiny amount of energy might be sufficient; any location where dew forms would be capable of producing power for a few hours in the morning, Miljkovic said. "Water will condense out from the atmosphere, it happens naturally," he said.

"The atmosphere is a huge source of power, and all you need is a temperature difference between the air and the device," he added — allowing the device to produce condensation, just as water condenses from warm, humid air on the outside of a cold glass.

The research, which also included MIT graduate student Daniel Preston and former postdoc Ryan Enright, now at Lucent Ireland Ltd., was supported by MIT's Solid-State Solar-Thermal Energy Conversion Center (S3TEC), funded by the U.S. Department of Energy; the Office of Naval Research; and the National Science Foundation.

Massachusetts Institute of Technology (MIT) 

- Edited by CFE Media. See more Control Engineering energy and power stories.

RANDOLPH , VA, United States, 07/16/14 12:03 PM:

The minute current obtained supports my reasoning of how lightning is produced in nature!
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Safety for 18 years, warehouse maintenance tips, Ethernet and the IIoT, GAMS 2016 recap
2016 Engineering Leaders Under 40; Future vision: Where is manufacturing headed?; Electrical distribution, redefined
Strategic outsourcing delivers efficiency; Sleeve bearing clearance; Causes of water hammer; Improve air quality; Maintenance safety; GAMS preview
SCADA at the junction, Managing risk through maintenance, Moving at the speed of data
Safety at every angle, Big Data's impact on operations, bridging the skills gap
The digital oilfield: Utilizing Big Data can yield big savings; Virtualization a real solution; Tracking SIS performance
Applying network redundancy; Overcoming loop tuning challenges; PID control and networks
Driving motor efficiency; Preventing arc flash in mission critical facilities; Integrating alternative power and existing electrical systems
Package boilers; Natural gas infrared heating; Thermal treasure; Standby generation; Natural gas supports green efforts

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role of plant safety and offers advice on best practices.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me