Get a life (cycle)

Green building rating systems, such as U.S. Green Building Council's LEED, Green Globes, and BREEAM, encourage designers to select products and materials that minimize the negative environmental impacts of building products over the lifetime of a building. Such considerations are embodied in what is known as a lifecycle analysis (LCA).


Green building rating systems, such as U.S. Green Building Council's LEED, Green Globes, and BREEAM, encourage designers to select products and materials that minimize the negative environmental impacts of building products over the lifetime of a building. Such considerations are embodied in what is known as a lifecycle analysis (LCA). Although current rating systems give a nod to LCAs, they do not specify how to perform one.

Engineers are knowledgeable on first costs, energy costs, and lifecycle costs. LCAs complement economic accounting with environmental accounting by determining overall energy use and environmental impact from cradle to grave. This means starting the analysis with the production of every component that goes into the building, and ending when every component is recycled, reused, or trashed. Think of LCA as lifecycle costing, but replace capital and operating expenses with energy use and environmental impacts such as greenhouse gas (GHG) emissions. You also should include energy consumption and associated GHG emissions for extracting and shipping virgin materials, assembling and shipping components and final products, and installing and maintaining the products in the building.

You also may ask if LCA is just another trendy method that will slow down an already-difficult design and construction process. Or will it encourage (and even pay) engineers, architects, and project financiers to think about the big picture when making decisions on building projects? When would this complicated process be used, and what are some predicted results based on commonly used building components?

The answers to these questions largely depend on the availability of data and software to perform LCAs. Some resources are now available, such as version 4.0 of Building for Environmental and Economic Sustainability (BEES), developed by the National Institute of Standards and Technology (NIST). According to NIST, BEES measures the environmental performance of building products by using the LCA approach specified in the ISO 14040 series of standards. See for more information.

You also may ask if MEP systems are significant compared to other building components, such as the envelope and furnishings. The answer is yes. A doctoral dissertation, published in 2004 by Seppo Junnila at the Helsinki University of Technology Construction Economics and Management, reports that HVAC and electrical systems cause 60% to 75% of a commercial office building's lifecycle impact.

While Junnila's data may not be applicable to every building type, it is evident that, from cradle to grave, MEP systems can account for the vast majority of energy and environmental impacts in all building systems. This is because materials commonly used in mechanical and electrical systems, such as steel, copper, and rubber, have some of the highest embodied energy values per unit weight compared to materials such as brick, concrete, and glass. Examples of this data were published for different building materials in “Inventory of Carbon and Energy (ICE)” by Geoff Hammon and Craig Jones, with the Dept. of Mechanical Engineering at the University of Bath, U.K. The data are very comprehensive, but there is no straightforward method to apply them to real-world projects.

While these types of studies still are not very common, and comprehensive data sets and application tools are not readily available, MEP designers should become familiar with and start using LCA to complement other analysis and decision-making tools they are using.

Author Information

Kosik is the leader of “Moving Towards Sustainability,” one of eight corporate pillars at EYP MCF, which focuses on the research, development, and implementation of sustainable design strategies for high-performance buildings. He also is a member of CSE 's Editorial Advisory Board.

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Safer human-robot collaboration; 2017 Maintenance Survey; Digital Training; Converting your lighting system
IIoT grows up; Six ways to lower IIoT costs; Six mobile safety strategies; 2017 Salary Survey
2016 Top Plant; 2016 Best Practices on manufacturing progress, efficiency, safety
Future of oil and gas projects; Reservoir models; The importance of SCADA to oil and gas
Big Data and bigger solutions; Tablet technologies; SCADA developments
SCADA at the junction, Managing risk through maintenance, Moving at the speed of data
What controller fits your application; Permanent magnet motors; Chemical manufacturer tames alarm management; Taking steps in a new direction
Commissioning electrical systems; Designing emergency and standby generator systems; Paralleling switchgear generator systems
Package boilers; Natural gas infrared heating; Thermal treasure; Standby generation; Natural gas supports green efforts

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Motion control advances and solutions can help with machine control, automated control on assembly lines, integration of robotics and automation, and machine safety.
This article collection contains several articles on creating and enhancing a safe workplace in manufacturing.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
click me