Get a life (cycle)

Green building rating systems, such as U.S. Green Building Council's LEED, Green Globes, and BREEAM, encourage designers to select products and materials that minimize the negative environmental impacts of building products over the lifetime of a building. Such considerations are embodied in what is known as a lifecycle analysis (LCA).


Green building rating systems, such as U.S. Green Building Council's LEED, Green Globes, and BREEAM, encourage designers to select products and materials that minimize the negative environmental impacts of building products over the lifetime of a building. Such considerations are embodied in what is known as a lifecycle analysis (LCA). Although current rating systems give a nod to LCAs, they do not specify how to perform one.

Engineers are knowledgeable on first costs, energy costs, and lifecycle costs. LCAs complement economic accounting with environmental accounting by determining overall energy use and environmental impact from cradle to grave. This means starting the analysis with the production of every component that goes into the building, and ending when every component is recycled, reused, or trashed. Think of LCA as lifecycle costing, but replace capital and operating expenses with energy use and environmental impacts such as greenhouse gas (GHG) emissions. You also should include energy consumption and associated GHG emissions for extracting and shipping virgin materials, assembling and shipping components and final products, and installing and maintaining the products in the building.

You also may ask if LCA is just another trendy method that will slow down an already-difficult design and construction process. Or will it encourage (and even pay) engineers, architects, and project financiers to think about the big picture when making decisions on building projects? When would this complicated process be used, and what are some predicted results based on commonly used building components?

The answers to these questions largely depend on the availability of data and software to perform LCAs. Some resources are now available, such as version 4.0 of Building for Environmental and Economic Sustainability (BEES), developed by the National Institute of Standards and Technology (NIST). According to NIST, BEES measures the environmental performance of building products by using the LCA approach specified in the ISO 14040 series of standards. See for more information.

You also may ask if MEP systems are significant compared to other building components, such as the envelope and furnishings. The answer is yes. A doctoral dissertation, published in 2004 by Seppo Junnila at the Helsinki University of Technology Construction Economics and Management, reports that HVAC and electrical systems cause 60% to 75% of a commercial office building's lifecycle impact.

While Junnila's data may not be applicable to every building type, it is evident that, from cradle to grave, MEP systems can account for the vast majority of energy and environmental impacts in all building systems. This is because materials commonly used in mechanical and electrical systems, such as steel, copper, and rubber, have some of the highest embodied energy values per unit weight compared to materials such as brick, concrete, and glass. Examples of this data were published for different building materials in “Inventory of Carbon and Energy (ICE)” by Geoff Hammon and Craig Jones, with the Dept. of Mechanical Engineering at the University of Bath, U.K. The data are very comprehensive, but there is no straightforward method to apply them to real-world projects.

While these types of studies still are not very common, and comprehensive data sets and application tools are not readily available, MEP designers should become familiar with and start using LCA to complement other analysis and decision-making tools they are using.

Author Information

Kosik is the leader of “Moving Towards Sustainability,” one of eight corporate pillars at EYP MCF, which focuses on the research, development, and implementation of sustainable design strategies for high-performance buildings. He also is a member of CSE 's Editorial Advisory Board.

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.