Flowmeters are used for determining the amount of product passing through a pipe for purposes of product blending, determining billing or cost, machine lubrication, process heating or cooling, and many other applications. Reliability and accuracy are two of the selection factors used in choosing a flowmeter.


Key Concepts
  • Types

  • Selection

  • Comparison

Selection factors

Flowmeters are used for determining the amount of product passing through a pipe for purposes of product blending, determining billing or cost, machine lubrication, process heating or cooling, and many other applications.

Reliability and accuracy are two of the selection factors used in choosing a flowmeter. Accuracy is important because it can make a difference between profit and loss when dispensing fluids. Inaccurate measurement could result in serious damage to equipment or product.

Flowmeter selection is not easy because there are about two dozen designs to choose from. Many are established designs. Thermal mass, Coriolis, and ultrasonic have benefited from new technology and electronics to become popular.

There are two basic types of flowmeters used with pipes: full-bore inline and insertion. Inline flowmeters allow the entire flow to pass through and derive a flow rate from average velocity. Other designs use positive displacement or mass flow techniques.

Insertion-type flowmeters protrude onto the pipe. They sample a point in the flow stream that represents average velocity or create a pressure differential dependent on flow.

Orifice plates are the most popular flowmeters in use today (Fig. 1). They produce the best results when measuring turbulent flow of clean liquids. Major advantages are no moving parts and low cost, regardless of pipe size. Metering accuracy depends on installation, orifice area ratio, and fluid properties. They must be installed in straight pipe runs.

Venturi tubes can handle large flows with low pressure drop and good accuracy. They can be used with most liquids, including those with high solids content. Venturis are not recommended for highly viscous liquids or those containing large amounts of sticky solids.

Flow nozzles represent a compromise between an orifice and a venturi. They can handle large solids, high velocities, high turbulence, and very high temperatures. Liquids with suspended solids can be metered.

Variable area flowmeters maintain a relatively constant pressure differential with varying flow rates by using a moveable restriction in the flow path (Fig. 2). The position of the piston in the housing indicates the flow rate. Because the flow rate can be read directly, secondary reading devices are unnecessary.

Thermal mass flowmeters operate independently of pressure and viscosity (Fig. 3).

The flow stream conducts heat from the heated sensing element. The conducted heat is directly proportional to mass flow rate. The amount of heat carried away depends on the fluid's velocity, density, specific heat, and thermal conductivity. If the probe becomes coated, heat transfer is changed, which negatively affects accuracy and response time.

Coriolis mass flowmeters accurately measure flow rates independent of temperature, pressure, viscosity, and solids content (Fig. 4).

In these units, fluid flow causes two, constantly vibrating tubes to twist. The amount of twist depends on the flow rate. The design is noninvasive and is used with many fluids over a wide range of flow rates. Since these meters maintain accuracy, they are used in applications that require tight control, management of high-value fluids, and custody transfers.

Turbine flowmeters use a rotor with propeller-like blades (Fig. 5).

Flow rate is proportional to rotational speed and is sensed by a magnetic pickup, infrared beam, or a radio frequency field. This design provides excellent short-term accuracy, repeatability, and rangeability. It is usually used with clean fluids and is not effective with swirling or high viscosity fluids. Meters must be calibrated for each application.

Magnetic flowmeters are constructed with a coil around the flow stream that creates a magnetic field (Fig. 6).

An electrically conductive fluid generates a voltage as it moves through the magnetic field. This voltage is proportional to the flow rate. These flowmeters can measure difficult and corrosive liquids and slurries and forward and reverse flow. The fluid must be electrically conductive and nonmagnetic. Most water-based fluids can be measured, petroleum-based fluids cannot.

Positive displacement flowmeters measure incremental volumes of flow as line pressure fills and displaces each chamber's volume downstream (Fig. 7).

Flow rate is determined by counting the number of times this action occurs. Because these meters have many moving parts, they are not suited for dirty or gritty fluids. Leakage around the gears or vanes can cause inaccurate readings, but viscous fluids reduce this effect. Designs include reciprocating single or multiple pistons, nutating disks, oval gears, lobed impellers, and rotary vanes.

Vortex flowmeters use a bluff body or shedder bar to generate vortices in the flow stream (Fig. 8).

Flow rate is determined by counting the vortices that form behind the bluff body. Frequency of vortex formation is directly proportional to fluid velocity. These flowmeters are rugged devices with no moving parts. Use with slurries or high-viscosity liquids is not recommended. They are not useful at very low flow rates because vortex formation is poor due to a lack of energy in the fluid.

Ultrasonic flowmeters are available in two designs: Doppler and transit time. Doppler measures the frequency shift of a sound wave to determine flow rate. Transit time measures the time it takes a sound wave to travel a specified distance through a flow stream. The variation in time is related to flow rate.

Doppler flowmeters use a constant-frequency sound wave transmitted through the pipe walls and fluid to a receiver. The sound wave is reflected back to the receiver by suspended solids, entrained gases, or flow turbulence in the fluid. Because the liquid causing the reflection is moving, frequency of the returned signal is shifted proportionately to the liquid's velocity.

Transit time flowmeters have transducers mounted at a 45-deg angle to flow, either on the same side or opposite sides of a pipe, depending on pipe and liquid characteristics (Fig. 9).

Speed of the signal or shift of frequency between the transducers increases or decreases with the direction of transmission and velocity of the fluid. The liquid being measured must be relatively free of entrained gases or solids.

Advantages and disadvantages of flowmeters

Type Advantages Disadvantages
Differential pressureLow initial costSubject to plugging
Familiar technologyPressure drop
Easy to useOrifice plate wear
Thermal massLow costPeriodic cleaning
Handles low-density fluidsNot highly accurate
Coriolis massHigh accuracySensitive to vibration
True mass flow measurementHigh initial cost
Not suitable for large pipes
Accepted technologyHigh flow velocity can cause damage
MagneticAccurateRequires conductive fluid
No pressure dropElectrodes subject to coating from fluid
Adaptable to large pipes
Positive displacementAccurateWear
Wide rangeabilityLimited use on large pipes
Requires clean fluids
VortexAccurateSensitive to vibration
Easy to installLacks approvals
UltrasonicLow maintenanceHigh initial cost
NonintrusiveMay require clean fluid
Adaptable to large pipesClamp-on installation

Selection factors

At a minimum, specifiers of flowmeters should consider the following:

Ability to withstand the process environment: fluid, pressure, temperature, etc.

Ability to provide the accuracy of measurement required

Serviceability and maintenance requirements

Long-term stability, durability, and frequency of calibration

Cost of purchase and installation

Ease of interfacing with existing equipment

Pressure loss incurred, level of swirl generated, or pulsation produced

Adaptable to future needs

The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
Doubling down on digital manufacturing; Data driving predictive maintenance; Electric motors and generators; Rewarding operational improvement
2017 Lubrication Guide; Software tools; Microgrids and energy strategies; Use robots effectively
Prescriptive maintenance; Hannover Messe 2017 recap; Reduce welding errors
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Research team developing Tesla coil designs; Implementing wireless process sensing
Commissioning electrical systems; Designing emergency and standby generator systems; Paralleling switchgear generator systems
Natural gas engines; New applications for fuel cells; Large engines become more efficient; Extending boiler life

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me