Feedforward control

Here's how to augment feedback control with feedforward control.




Feedback control

Driving a bumper car in reverse forces the driver to wait until after a disturbance has occurred before making a course correction.

Driving a bumper car in reverse forces the driver to wait until after a disturbance has occurred before making a course correction.

Source: Control Engineering

Driving forward allows the driver to visually measure an impending disturbance, anticipate its effect on the car

Driving forward allows the driver to visually measure an impending disturbance, anticipate its effect on the car's future trajectory adn correct course.

Source: Control Engineering

Traditional feedback control has been likened to driving a bumper car backwards. Without a view of the track ahead, the driver must look backward to decide where to go. Steering correction can only compensate after the car is off course.


Feedforward control is more akin to driving the car forwards so that the driver can make steering corrections just before reaching the next curve. When the driver sees that an obstacle ahead will disturb the desired trajectory, preemptive action can minimize the impending deviation.


In industrial applications, a feedforward controller can similarly minimize the effects of a disturbance, but only if the disturbance can be measured or calculated before it affects the process variable. A classic example is a steam distribution system where a central boiler provides steam at a constant pressure to plant equipment.


When an idle machine comes on line and starts drawing steam from the boiler, the pressure controller can preemptively turn up the heat and inject more water into the boiler if it knows how much steam the machine will need. If it were to rely strictly on feedback, the pressure controller would have to wait until the boiler pressure dropped before attempting to compensate for the new load.


The trick to effective feedforward control is accurately predicting the effects of measured disturbances. An experienced bumper-car driver can easily decide how to steer around an upcoming obstacle. With steam distribution, a feedforward pressure controller would need to know exactly when a particular machine will come on line and how much steam it will need.


Mathematical models can predict how a process responds to measurable disturbances and to the controller’s efforts. Since a model never can be 100% accurate and because other unmeasurable disturbances may also affect the process variable, a feedforward controller is almost always combined with a feedback controller, for the best of both worlds.


The feedforward controller makes its best guess about how to modify the control effort to compensate for an impending disturbance, and the feedback controller takes up the slack. It measures the net effect of the disturbance and the feedforward controller’s preemptive efforts then compensates for any deviations in the process variable that the feedforward controller could not prevent.


Feedforward controllers can be difficult to implement, especially if process behavior is not well understood or if disturbance variables are hard to measure or too many. A poorly-designed feedforward controller can also amplify a disturbance and make the feedback controller’s job harder.


Still, feedforward controllers can be worth the effort if disturbances are so frequent or so large that a feedback controller alone cannot keep up. A well-designed feedforward controller can reduce the effects of major load changes to mere blips in the process variable.



Author Information

Vance VanDoren, Ph.D., P.E., is Control Engineering consulting editor, at controleng@msn.com .

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Safety for 18 years, warehouse maintenance tips, Ethernet and the IIoT, GAMS 2016 recap
2016 Engineering Leaders Under 40; Future vision: Where is manufacturing headed?; Electrical distribution, redefined
Strategic outsourcing delivers efficiency; Sleeve bearing clearance; Causes of water hammer; Improve air quality; Maintenance safety; GAMS preview
SCADA at the junction, Managing risk through maintenance, Moving at the speed of data
Safety at every angle, Big Data's impact on operations, bridging the skills gap
The digital oilfield: Utilizing Big Data can yield big savings; Virtualization a real solution; Tracking SIS performance
Applying network redundancy; Overcoming loop tuning challenges; PID control and networks
Driving motor efficiency; Preventing arc flash in mission critical facilities; Integrating alternative power and existing electrical systems
Package boilers; Natural gas infrared heating; Thermal treasure; Standby generation; Natural gas supports green efforts

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role of plant safety and offers advice on best practices.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me