Feedback, KPIs critical to FDA’s case for efficient manufacturing

The U.S. Food and Drug Administration (FDA) is promoting how knowledge acquired in the development, manufacture, and use of one generation of product can be applied to future generations that a company plans to market. To do this, the FDA is using total product lifecycle (TPLC) to show how feedback and key performance indicators (KPIs) can make manufacturing more efficient, resulting in lower-c...

05/01/2009


The U.S. Food and Drug Administration (FDA) is promoting how knowledge acquired in the development, manufacture, and use of one generation of product can be applied to future generations that a company plans to market. To do this, the FDA is using total product lifecycle (TPLC) to show how feedback and key performance indicators (KPIs) can make manufacturing more efficient, resulting in lower-cost medical devices.

Providing a feedback loop between shop floor data and the design of the next generation product is indispensible in TPLC. Incorporating strategies such as robust design and designing for manufacturability enable product designers to take into consideration process capabilities. This could have a significant impact in increasing product quality while reducing manufacturing costs.

FDA also has been very proactive is in communicating its support for an industry-wide shift towards a focus on control theory and away from testing to document quality.

The agency defines the “desired state” as follows:

  • Product quality and performance achieved and assured by design of effective and efficient manufacturing processes;

  • Product specifications based on mechanistic understanding of how formulation and process factors impact product performance; and

  • Ability to effect continuous improvement and continuous “real time” assurance of quality.

To meet FDA’s stated “desired state,” manufacturers must attain real-time visibility into their processes to separate the wheat from the chaff. This requires deep knowledge of critical-to-quality variables and KPIs.

To move towards operational excellence, device manufacturers must identify “golden” (optimal) and “lead” (first) units, lots or batches and analyze key parameters that produced them. They must also compare and contrast such batches to identify parameters that are inconsequential to product quality. This approach can provide a deep understanding of the process to enable the development of KPIs to reduce variability, increase yields, and lower costs.





No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Safer human-robot collaboration; 2017 Maintenance Survey; Digital Training; Converting your lighting system
IIoT grows up; Six ways to lower IIoT costs; Six mobile safety strategies; 2017 Salary Survey
2016 Top Plant; 2016 Best Practices on manufacturing progress, efficiency, safety
Future of oil and gas projects; Reservoir models; The importance of SCADA to oil and gas
Big Data and bigger solutions; Tablet technologies; SCADA developments
SCADA at the junction, Managing risk through maintenance, Moving at the speed of data
What controller fits your application; Permanent magnet motors; Chemical manufacturer tames alarm management; Taking steps in a new direction
Commissioning electrical systems; Designing emergency and standby generator systems; Paralleling switchgear generator systems
Package boilers; Natural gas infrared heating; Thermal treasure; Standby generation; Natural gas supports green efforts

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Motion control advances and solutions can help with machine control, automated control on assembly lines, integration of robotics and automation, and machine safety.
This article collection contains several articles on preventing compressed air leaks and centrifugal air compressor basics and best practices for the "fifth utility" in manufacturing plants.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
click me