Evolving PID tuning rules

03/13/2013


Model-based tuning

Note that the so-called model-free tuning just discussed is in fact partial or indirect model-based tuning. This is because the ultimate gain directly relates to the inverse of the process gain and ultimate period relates to the process dead time and lag. Significant progress in process model identification with commonly available identification tools makes it possible and easy to develop a process model and apply process-model parameters directly for model-based tuning. The first-order-lag-plus-dead-time model is the most common approximation for self-regulating processes (see Figure 3), and linear-integrator-with-gain-and-dead-time is used for integrating processes (see Figure 4). 

Figure 3 First Order Plus Dead Time Self-Regulating Process Response

[Figure 3. First Order Plus Dead Time Self-Regulating Process Response]

Figure 4 Integrating Process Response

[Figure 4. Integrating Process Response] 

There are many model-based tuning techniques; the most popular are Internal Model Control (IMC), Lambda tuning, and recently developed SIMple Control (SIMC) rules.

The most important feature of model-based tuning is its ability to shape control loop performance and robustness by using a tuning parameter. The tuning parameter relating to the speed of response is used to vary the trade-off between performance and robustness, coordinate response among loops, and achieve process control objectives (averaging level, tight control, etc.). In principle for self-regulating processes, the methods adjust the PID controller reset (or reset and rate) to match process dynamics and then adjust the controller gain to achieve the desired closed loop response. IMC and Lambda tuning have become popular because oscillation and overshoot are avoided, controllers are less sensitive to noise, and control performance can be specified in an intuitive way through the closed-loop time constant. However, load disturbance rejection is typically worse than in quarter-amplitude decay tuning. The SIMC rules were developed to improve model-based tuning performance, primarily for disturbance rejection when desired. SIMC rules provide a higher integral gain (smaller reset time) for the processes with a small dead time than Lambda or IMC tuning rules, by applying this formula: 

 

As it follows from the formula, for the processes with a small dead time and large time constant with a properly selected λ to satisfy the condition τ > 4 (τd + λ), reset time is set as Ti = 4(τd + λ) , instead of Ti = τ, as in Lambda or IMC tuning.

Controller proportional gain Kp is calculated in the same way as for the Lambda or IMC tuning:

 

For the integrating process controller, parameters are:

It is interesting to notice that optimum tuning rules geared toward minimum integrated absolute error (IAE) advanced by F. Greg Shinskey are only a particular case of SIMC tuning rules for the integrating process:

 

In fact, such formulas are very close to what is obtained when using  λ= 0. This results in the following gain and reset time:

Formulas which do not apply filter λ are therefore for a maximum performance with no designed robustness margin and no possibility of setting a desired loop performance. Therefore, using such formulas is particularly undesirable when process parameters may change causing loop instability. Instead, simple formulas provide the ability to design loop performance and robustness in a required way.

Which brings us back to…

Historically, PID controller tuning started from observing a loop with proportional action on the verge of stability, and then decreasing proportional gain to get stable operation and calculating integral and derivative terms from the loop oscillation period. In fact, all above indicators are related in some way to the process model parameters. Therefore, if all process model parameters are explicitly known, it is possible to satisfy tuning requirements in the best way. There are several model-based tuning rules which give a simple and intuitively understandable method to set a desired loop performance and robustness for a given process.

Willy K. Wojsznis is a senior technologist, and Terry Blevins is principal technologist, future architecture, for Emerson Process Management.

Additional reading:

Bennett, Stuart, “A history of control engineering, 1930-1955.” IET, p. 48. ISBN 978-0-86341-299-8, 1993.

Minorsky, Nicolas (1922). "Directional stability of automatically steered bodies." Journal of the American Society of Naval Engineers, 34 (2): 280–309.

J. G. Ziegler and N. B. Nichols, “Optimum settings for automatic controllers,” Transactions of the ASME, Vol. 64, Nov. 1942.

J. G. Ziegler and N. B. Nichols, “Optimum settings for automatic controllers,” Transactions of the ASME, Vol. 115, June 1993.

K. J. Astrom and T. Hagglund, “Automatic tuning of PID controllers,” ISA 1988, Research Triangle Park, NC, USA.

K. J. Astrom and T. Hagglund, “A frequency domain method for automatic tuning of simple feedback loops”, IEEE 23rd Conference on Decision and Control, Las Vegas, Dec. 1984.

W.L. Bialkowski and B. Haggman, “Quarter-amplitude damping method is no longer the industry standard,” American Papermaker, March 1992.

T. Blevins, W. Wojsznis, and M. Nixon, “Advanced Control Foundation,” ISA, 2012.

Skogestad, S. “Simple analytic rules for model reduction and pid controller tuning,” Journal of Process Control 13, 2003. 

Key concepts

  • PID controllers are virtually everywhere, yet effective tuning remains a challenge
  • Conceptually, there is more similarity among various methods than one might expect
  • Ultimately, a strategy needs to reflect the needs of the process, and selection depends on understanding those needs  

Go online

For more information, visit:

www.advancedcontrolfoundation.com 

www.emersonprocess.com

Read more on control strategy:

Fixing PID, Nov. 2012

Feedback controllers do their best, Oct. 2012

Disturbance-rejection vs. setpoint-tracking controllers, Sept. 2011

Understanding derivative in PID control, Feb. 2010

Three faces of PID, Mar. 2007


<< First < Previous Page 1 Page 2 Next > Last >>

The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
A new approach to the Skills Gap; Community colleges may hold the key for manufacturing; 2017 Engineering Leaders Under 40
Doubling down on digital manufacturing; Data driving predictive maintenance; Electric motors and generators; Rewarding operational improvement
2017 Lubrication Guide; Software tools; Microgrids and energy strategies; Use robots effectively
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Power system design for high-performance buildings; mitigating arc flash hazards
Research team developing Tesla coil designs; Implementing wireless process sensing
Commissioning electrical systems; Designing emergency and standby generator systems; Paralleling switchgear generator systems

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me