Ethernet communication tips

Details of Ethernet in an industrial environment can be hard to find, and resources specific to industrial Ethernet hard to come by. Users often overlook the possibility of using Ethernet to manage application response time for end devices. Ethernet switches and cabling can be easily installed by a user, interconnecting dozens or hundreds of devices, and eliminating many legacy fieldbus restrictions such as node counts and distances. Here are tips and specifics that can be useful.

08/13/2008


The details of Ethernet in an industrial environment can be hard to find, and resources specific to industrial Ethernet hard to come by. So here are some tips and specifics that can be useful.

Users often overlook the possibility of using Ethernet to manage application response time for end devices. Ethernet switches and cabling can be easily installed by a user, interconnecting dozens or hundreds of devices, and eliminating many legacy fieldbus restrictions such as node counts and distances.

When estimating timing for Ethernet I/O, remember than an application must read an input, solve the input in logic, and respond by writing an output, which means communications between the I/O module and the PLC CPU is occurring twice.

When estimating timing for Ethernet I/O, remember than an application must read an input, solve the input in logic, and respond by writing an output, which means communications between the I/O module and the PLC CPU is occurring twice.

Communications programming for programmable logic controller (PLC) Ethernet applications can be done by simply entering the desired devices and register counts into a table. But understanding the proper timing of communication settings is important, and will result in a more reliable, error-free operation.

To estimate the timing, consider that an application must read an input, solve the input in logic, and respond by writing an output. This requires two network communication cycles between the master and end device: one to read, and another to write (see illustration). In between, there is the Ethernet interface stack processing, logic solve for central processing units (CPUs), and communications servicing in the devices via backplane or bus.

Putting this knowledge into a real-world context, consider what is meant by a “fast response time” for an Ethernet I/O module, which is often quoted as a few milliseconds. Realistically, the communications cycle to the I/O module must occur twice, along with two CPU scans for the master PLC.

The “fast response” quoted is to send a message to the module and for the module to react to that message. As you can see, that does not accurately reflect the real-world operation. The cycle or repetition rate of communications should be a multiple of 2.5 to 3 times the master PLC scan time. This will allow problem-free communications, because then PLC masters will have sufficient time to solve logic and process communications, and the end devices will have responded to changes in input or output status.

While the robustness of the Ethernet infrastructure handles substantial traffic loads with ease, end devices may be overwhelmed by multiple masters. Simple devices with limited processing power can take a few milliseconds to respond. Even robust PLCs that service communications at the end of a CPU scan will buffer requests until the end of the scan. Issues will not give responses until the CPU scan is complete.

One concern remedied

One of the biggest concerns in the beginning stages of industrial use Ethernet was non-deterministic performance due to collisions, which occur by design, in half duplex Ethernet networks. As node density increased, performance grew increasingly worse.

With the advent of full duplex switched Ethernet in the mid 1990s, backbone collisions were virtually eliminated and performance improved. Most newer end devices now support full duplex operation. This has led to a substantial increase in system performance and greater response time consistency.

An inherited benefit of such consistency is the ability to expand the node count of industrial Ethernet networks. A switched Ethernet with full duplex operation can now approach determinism with repeatable transmission times from one end device to another. While most networks regarded as deterministic are token-based, having a predictable and repeatable transmission time between devices is sufficient—and essential for industrial uses.

Depending on the buffering and the forwarding delays of each switch in the path, the time to transmit a message from one end point to another while passing through switches varies slightly. However, switch forwarding delay is generally under 50 microseconds per switch. Buffer congestion can be managed using IEEE 802.1p Quality of Service prioritization. Therefore, it is likely that the actual transmission time from one device to another will consistently be within a millisecond, which is satisfactory for most applications.

New challenges on the horizon

Ethernet and TCP/IP provide a rich set of features for global communications, monitoring, data exchange, and Web accessibility. But assembling new-generation Ethernet performance, features, and services into a comprehensive enterprise solution is a challenge end users continue to face.

Another ongoing challenge exists in putting these technologies to work in harmony. As users try to determine how each technology fits within the overall enterprise architecture, system solutions that improve efficiency remain top of mind.

With legacy systems, communication and data interchange are confined to the manufacturing site. Now, Ethernet and TCP/IP make the same data available globally and in real time.

Harnessing the power of these technologies allows business to improve the entire operation, from the flow of raw materials to the distribution of finished product.


ONLINE:

At www.controleng.com , search Industrial Ethernet for more resources


Author Information

Michael B. Roche is principal network application engineer for connectivity products in the Automation business unit of Schneider Electric End User Solutions. To find out more about Schneider Electric’s Telemecanique brand of Ethernet hardware and industrial networking services, visit




No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Leaders Under 40 program features outstanding young people who are making a difference in manufacturing. View the 2013 Leaders here.
The new control room: It's got all the bells and whistles - and alarms, too; Remote maintenance; Specifying VFDs
2014 forecast issue: To serve and to manufacture - Veterans will bring skill and discipline to the plant floor if we can find a way to get them there.
2013 Top Plant: Lincoln Electric Company, Cleveland, Ohio
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Bring focus to PLC programming: 5 things to avoid in putting your system together; Managing the DCS upgrade; PLM upgrade: a step-by-step approach
Balancing the bagging triangle; PID tuning improves process efficiency; Standardizing control room HMIs
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.