Enhancing emergency lighting

Many engineering companies and their clients are taking a second look at emergency lighting systems because of concerns about code combined with energy efficiency, and U.S. Green Building Council LEED demands.

09/01/2008


Many engineering companies and their clients are taking a second look at emergency lighting systems because of concerns about code combined with energy efficiency, and U.S. Green Building Council LEED demands. Upon discovering that the systems they specify do not meet USGBC requirements, many are taking an unconventional approach by using a UPS system, an economical solution to support and enhance emergency lighting systems.

Various codes describe the exit path requirements for safe exiting of buildings. Chapter 10 of the International Building Code (IBC) describes the requirements for the means of egress as being a “continuous and unobstructed path of vertical and horizontal egress travel from any occupied portion of a building to a public way.”

It defines this path as consisting of three parts: exit access, exit, and exit discharge. The exit access is defined as an area leading from an occupied area through an area that is separated by fire-rated construction, thus providing a protected path leading to the exterior doors at ground level. The exterior door is referred to as the exit. The exit discharge is defined as the area from the exit to a public right-of-way.

The IBC provides further detail by describing the height and width of the means of egress including a restriction for protruding objects of up to 4 in. An occupant load table lists specific types of areas and the corresponding maximum occupants allowed including mezzanine levels, fixed seating, and outdoor areas. The code additionally specifies that yards, courts, and similar outdoor areas accessible to and usable by the building occupants also have a means of egress.

Illumination for the egress path, including the exit discharge, is required by the IBC to be a minimum of 1 foot-candle (11 lux) at the walking surface. There are, however, a few exceptions, which include dwelling units and sleeping units within groups R-1, R-2, and R-3.

R-1 is defined as residential occupancies having sleeping areas, such as hotels or motels; R-2 is considered to be residential occupancies including apartments and dormitories; R-3 occupancies include duplexes, child care for fewer than five people, or congregate living with 16 or fewer people. Auditoriums, theaters, and concert or opera halls can have reduced lighting during performances, but not less than a minimum of 0.2 foot-candle. All lighting must be restored to standard regulations upon activation of the fire alarm system.

For emergency lighting, the IBC requires initial illumination to be at least an average of 1 foot-candle and a minimum of 0.1 foot-candle. It is permitted to decline to an average of 0.6 foot-candle and a minimum of 0.06 foot-candle at the end of the 90-min duration for which the emergency power system is required to sustain the building.

It is important to realize that the code establishes the minimum requirements that apply to small single-story offices, as well as churches or school gyms that can have a much higher occupancy.

Although the IBC seems to be the most commonly cited reference for emergency lighting requirements, it is good practice to check with state and local jurisdictions before beginning any project to ensure that local requirements are met. For example, in previous codes, California based its requirements on the Uniform Building Code and listed a minimum of 1 foot-candle rather than an average of 1 foot-candle for emergency egress lighting.

While there are a number of options that accommodate these requirements, a UPS system holds key advantages over its competitors in certain situations.

Advantages of a UPS system

Before moving forward with a UPS solution for emergency lighting, it's imperative to understand the most conducive environments for a successful deployment. Some characteristics include:

• No defined egress path: Facilities that do not have a defined egress path, such as open offices with moveable partitions, large manufacturing spaces or warehouses, and outdoor courtyards, are best suited for a UPS system. A UPS system provides more power to the emergency lighting, resulting in higher lumen output for a longer period of time.

Standard battery packs for T-8 lamps provide a level of reduced lighting at around 300 lumens. (In certain cases, higher output can be provided at an increased cost.) Lumen output during the code-required 90 min may not be a linear reduction to 60%. For some products, it declines during the first 10 to 15 min to about 70% and then continues to drop to the minimum code level. UPS systems provide full output for the 90-min duration and may be an advantage for larger areas and some occupancy types.

• High ceilings: Typically, facilities that do not have any defined egress paths may also have high ceilings. Emergency lighting units and fluorescent battery packs are often not ideal for these applications. As shown by the system installed at the Hunter Douglas manufacturing facility (See sidebar “Lowering costs”), required routing testing and maintenance is more efficient with a single floor-mounted UPS system than a series of fluorescent battery packs at the 30-ft ceiling height.

• Cold climate: For outdoor lighting or large food storage coolers and freezers, temperature can become a problem for battery systems because ideal battery temperature is 78 F. While some emergency lighting units and fluorescent battery packs are now rated for 0 F where small resistive heaters have been included, a UPS system may still provide the best solution. The UPS system can be located inside the facility or in a separate, temperature-controlled area. Lamp type is not restricted, and full lumen output is maintained.

• Testing requirements: NPFA 101, Life Safety Code, states that functional tests of emergency lighting equipment are required at 30-day intervals for not less than 30 sec, and annually for not less than 90 min for a battery-powered system. Written records of visual inspections and tests are to be kept by the owner for inspection by the authority having jurisdiction (AHJ).

Where fluorescent battery packs are used or emergency lighting units are installed, the individual units may need to be individually tested with the test button, or the circuits that feed them may need to be tripped so that the units can be checked. This can take significant time and record keeping in a larger complex. By using a UPS system, the lights are directly powered and lamp replacement will fall under routine maintenance.

• Significant exterior lighting needs: Facilities that require a significant amount of exterior emergency lighting, such as large apartment complexes, senior living centers, school buildings, and parking garages, are another application ideally suited for a UPS system. For the number of lights needed, it is not ideal to use individual fluorescent battery packs. Some building operators also have avoided using generators because of the added hassles of environmental regulations, restricted hours of operation, fuel storage permits, testing, and record keeping. One jurisdiction in Nevada will not accept generators as the primary emergency lighting source as they had a critical failure during a fire. By using a UPS system, the exterior emergency lighting is connected and controlled from a single location. This results in significant savings in regular performance of testing and maintenance. The UPS system also can be sized to provide longer run times in critical applications as compared to individual 90-min battery packs.

Specifying UPS systems

Several products currently are available that can help meet emergency lighting requirements for most applications including emergency lighting units, fluorescent battery packs, and on-site generation. UPS systems are one of the more economical solutions to emergency lighting requirements and have been growing in popularity.

Lighting UPS systems are UL 924 listed and differ from other UPS systems that typically are used in data center environments in that they provide 90 min of full lighting output at their listed capacity and have a quicker recharge time for a larger battery. They support incandescent, fluorescent, and high intensity discharge (HID) lamps—or any combination of lamp types.

UPS systems typically have a dual rating such as 10 kVA/8 kW. Electronic ballasts typically have a power factor of 95% to 99%. HID fixtures tend to have a power factor of 90%, while incandescent lighting has a power factor of unity or 100%.

It is important to consider the kiloWatt rating of the UPS during the design of the project because lighting can operate at close to unity power factor. (Note: Be sure to check with the manufacturer to determine if the UPS unit's rating is for a continuous lighting load.)

A UPS system is an economical solution to support emergency lighting in high-bay manufacturing, churches, restaurants, larger apartments, senior assisted living projects, offices, and parking garages. It has become one of the first preferences for contractors as an economic way to meet costs and satisfy or even exceed code requirements. A quality UPS system for certain projects can reduce the cost of installation and eliminate the issues associated with solutions that rely on battery packs. Although more advantageous in some situations than others, a UPS system can be considered the best emergency lighting solution at a feasible cost.


Author Information

Hines is a senior electrical engineer with Rex Moore Electrical Contractors and Engineers, Sacramento, Calif. He has designed emergency lighting systems for various projects such as the Hunter Douglas manufacturing facility and the Progressive Baptist Church. Both were recognized by Pacific Gas & Electric Co., the local utility provider, for its Savings by Design program and received energy incentive awards.


Lowering costs

Hunter Douglas, a window treatment manufacturer, installed a Liebert NX UPS system from Emerson Network Power in its West Sacramento, Calif., manufacturing facility. The facility featured a 30-ft ceiling and used Lithonia I-beam fixtures with T-5 lamps to provide high-quality, energy-efficient lighting. The emergency lighting was designed for a minimum of 1 foot-candle to ensure safe exiting. An analysis conducted at the start of the project showed that using fluorescent battery packs would have been more expensive to install, maintain, and test than a floor-mounted UPS system.

Exceeding requirements

Progressive Baptist Church in Stockton, Calif., installed emergency lighting supported by Emerson Network Power's Liebert NX UPS system. The general illumination in the facility was provided by fluorescent down lights with two 42 W compact fluorescent lamps and dimming ballasts. A lighting automatic transfer switch was used to switch between a theatrical dimmer and the UPS system upon power failure. This exceeded the present code requirement for emergency lighting, which was important because of the higher occupancy of the facility during services. In comparison with fluorescent battery packs, installation cost was in favor of the UPS system. Also, because of the need for dimming control, additional wiring would have been required if fluorescent battery packs had been used.



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.