Energy Management 101: Controlling Costs Campus-wide with EEM


It’s becoming more challenging for educational institutions to find the funds for facility upgrades and expansion, but in many cases, an untapped source of revenue exists in improved energy-management practices. Across North America, innovative colleges and universities are deploying energy management technology to help reduce electricity bills and avoid costly power-quality related interruptions.

By their very nature, large educational institutions have a lot to gain from managing their energy wisely. Characterized by a sprawling campus, multiple buildings, thousands of residents and a diverse range of power requirements, a typical university campus is like any progressive community—a large energy consumer. And with more than its share of high-tech labs, medical facilities and specialized computer equipment, this is one community that can benefit considerably by controlling the cost, quality and reliability of its power.

Fortunately, today’s technology offers many ways to do just that. Instead of waiting for the monthly electricity bill to determine power usage, facility managers can now use enterprise energy management (EEM) technology to manage campus-wide energy use, improve problem response and increase reliability.

An EEM system can help managers predict energy usage for the month, allocate costs by department and identify waste or potential trouble spots. A detailed understanding of the facility’s energy requirements over time can also help simulate alternative rate structures, negotiate better power-supply contracts and evaluate future options such as installing on-campus generation.

EEM System Components

A typical EEM system consists of a network of intelligent energy meters linked to a centrally located server running the enterprise energy management software. Each meter monitors a specific location or activity, while the head-end software continuously retrieves, aggregates, and processes the information.

The system logs the information in an historical database, responds to any alarm conditions by relaying notifications to operations personnel, and displays the real-time status of each monitored area on the screens of one or more networked workstations. In short, the software aggregates and analyses data from multiple sources and acts as the central intelligence for the entire system.

Figure 1: A typical EEM system includes web-enabled software and intelligent meters, connected over a communications network

The type and location of each meter is determined by the electrical system itself. For example, an advanced, utility-grade meter can be installed at the main substation to verify the quantity and quality of power delivered to the campus. Simpler sub-metering devices can then be installed at key points around the campus to monitor individual buildings or departments.

Typically, the distributed meters communicate with the head-end software across the campus’ existing Ethernet-based local area network; however, if the campus is geographically dispersed over great distances, then telephone, wireless and even the Internet can be used. In some cases, the meters can use e-mail to send system updates or alarm notifications directly to the facility manager, or even host a built-in web page accessible over any standard web browser.

Using an EEM system to better understand how a facility currently uses energy is the first step in controlling the cost, quality and reliability of its power.

Controlling Energy Costs

Although the cost of electricity is a considerable line item on most income statements, it often goes unchallenged and unmanaged. Like any large business, universities need to take active charge of their energy management and procurement; however, to do so requires a full understanding of ongoing energy needs, and the ability to manage its use.

Relatively few institutions have the ability to verify the billing statements from their energy suppliers, or to allocate the appropriate amounts to specific cost centers or activities within their operations. An EEM system delivers the information needed to accurately represent the true cost of doing business and helps to identify procedures or departments that exhibit energy inefficiencies or waste.

With a high-accuracy meter located at the utility service entrance, an EEM system can “shadow bill” campus energy consumption. Automated reports can then help to verify utility bills, and identify any over-billing errors.

Figure 2: Typical EEM intelligent energy metering and control devices

By allocating energy costs by department, and using automated reports and alarm options to keep staff aware, an EEM system can help everyone actively reduce energy consumption, increase efficiency, and minimize costs within their individual departments. For campus-based commercial outlets such as restaurants or shops, an EEM system can help to accurately sub-bill each tenant for the energy used.

With a network of meters reporting to one or more energy-management workstations, facility managers have the tools to identify and monitor energy requirements across the entire campus. This information can then be presented as a load profile —basically a snapshot of energy consumption at all monitored locations throughout a typical day, week or month.

A load profile can help to illustrate how energy is used throughout the facility, providing a valuable baseline that can help identify inefficiencies and evaluate improvement efforts. With an accurate understanding of energy consumption, facility managers can normalize usage patterns in conjunction with variables such as occupancy, temperature and weather to accurately benchmark and project energy requirements.

An EEM system also helps managers analyze historical energy trends to accurately predict needs. With this information, “what if” scenarios can be developed to help facility managers optimize loads or processes and even negotiate better energy contracts. Accurate information on usage trends can also help discover unused capacity, which in turn can defer capital investment decisions such as building additional onsite generation.

Depending on the campus location, there may also be an opportunity to take advantage of demand response or load curtailment programs offered by energy suppliers. These programs offer price concessions to the consumer, in return for the consumer agreeing to reduce its load anytime energy consumption across the power grid is at a critical peak. In this way, the consumer can also avoid incurring penalties from the utility for exceeding a maximum power demand level during peak times.

All of these opportunities are dynamic in nature. When energy prices are high, or demand is rising too quickly, an EEM system can start a generator or dynamically shed non-essential loads (such as heating or air-conditioning) to reduce the energy drawn from the utility.

And because utilities may also bill an additional surcharge for consuming energy inefficiently below a minimum power factor level (typically caused by large motor loads), an EEM system can intelligently control capacitor banks to correct low power factor and again avoid penalties.

Figure 3: Typical EEM web-enabled software, with custom energy and power quality reports

Maintaining Power Quality and Reliability

When it comes to power quality, the cost of harmonics, sags, transients and outages can quickly become very expensive, not to mention disruptive. Data may be lost, equipment damaged and procedures interrupted. Power quality is especially critical for the types of sensitive applications found in data centers, science labs and medical facilities. With sensitive equipment requiring “clean” power, these operations require near 100% uptime.

The power grid was designed to deliver “three nines” of clean, reliable power; that is, it provides a constant flow of energy 99.9% of the time. Although this is sufficient for lighting and motor loads, new digital assets and processes may require power reliability as high as “six nines” (99.9999%) or higher.

To achieve this, a university may have one or more feeds from the utility, or some form of stand-by generation with a transfer switch that selects between the utility and the generator feed. However, because generators typically cannot start up instantly when needed, other forms of mitigation equipment, such as UPS/battery systems and flywheels are used to “fill the gap.” These are connected by electrical distribution equipment such as transformers and circuit breakers. An EEM system can carefully monitor all this equipment to ensure it operates properly when needed.

When power quality problems are suspected, portable power-monitoring equipment can sometimes help to pinpoint problem areas. But for a large campus, an EEM system with its network of permanent-mount meters installed at key locations can verify power quality around the clock. This solution combines fast desktop access to status information for the entire electrical system, with the ability to receive early warning alarms anywhere by e-mail, pager or cell phone.

And like the “black box” used by the airline industry, the EEM system provides valuable forensic data after an event, to help personnel identify the source of a disturbance, and take corrective action to help prevent a reoccurrence. Detailed power quality reports can also help personnel correlate poor power quality with negative impacts on operations and processes.

In labs and research facilities across campus, a single interruption can easily result in the loss of months of costly work. To help offset this risk, onsite generators are becoming a popular addition, but the opportunities they provide can also raise many questions. As a source of standby power, generators can not only support improved reliability, but can cut costs by “peak shaving” peaks in demand, and can convert waste heat to electricity through co-generation. A clear understanding of generator processes is crucial to the efficient and economical operation of the facility. For this reason, an enterprise energy management system can provide a simple and efficient way to manage onsite generation assets, by profiling energy requirements and managing generators or loads based on power reliability or economic conditions.

Sound energy management

When considering ways to control costs on campus, sound energy management practices should be a priority. By monitoring consumption on an ongoing basis, managers can predict electricity costs for the month, avoid penalties, and verify each bill. Threats to reliability can be identified and corrected proactively, and poor power quality or disturbances can be dealt with promptly and efficiently.

A network of meters installed campus-wide can help to allocate costs by department or function, and verify the impact of any new energy initiatives. Automated reports can keep staff informed, so they can actively participate in programs to reduce energy consumption, increase efficiency, and minimize costs within their individual departments. In the long run, a detailed picture of overall energy requirements can help to identify opportunities for better supply contracts, alternative rate structures, or new construction such as on-campus generation.

The place to start is a clear understanding of energy usage across campus over a given period of time. From there, assessments can be made based on fact, corrective measures can be identified, and the relative success of improvements can be verified. By supporting a continuous cycle of research, optimization and verification, an investment in energy management strategies can open the door to a more efficient and cost-effective future.

The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
A new approach to the Skills Gap; Community colleges may hold the key for manufacturing; 2017 Engineering Leaders Under 40
Doubling down on digital manufacturing; Data driving predictive maintenance; Electric motors and generators; Rewarding operational improvement
2017 Lubrication Guide; Software tools; Microgrids and energy strategies; Use robots effectively
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Power system design for high-performance buildings; mitigating arc flash hazards
Research team developing Tesla coil designs; Implementing wireless process sensing
Commissioning electrical systems; Designing emergency and standby generator systems; Paralleling switchgear generator systems

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me