Energy harvesting materials draw interest in industry

Frost & Sullivan research reports that new technical advances and rising energy prices are driving new research into energy scavenging solutions.

02/05/2010


Although energy harvesting materials wererelatively unknown in the past, their unique properties have driven them into thespotlight recently. Technical advancements in the field have led to large-scaleimprovements, giving rise to high-efficiency energy scavenging solutions. Atthe same time, escalating energy prices have necessitated the development ofcost-effective energy harvesting materials to decrease dependence on energysources.

Materials with the ability to support self-powered

devices were among the first energy harvesting technologies developed, pushing

forward the growth of the piezoelectric (PE) and electromagnetic (EM) energy

harvesting materials market. Other materials now available capture light energy

from sunlight at almost all wavelengths, thereby increasing energy density.

Several manufacturers from across the globe have

deployed energy harvesting products for commercial use; however, large-scale

production of these devices has not been attained. Though research has

identified various energy sources for harvesting energy, only a few techniques

have proven useful forhigh-volume production.

A new analysis from Frost & Sullivan "Energy Harvesting Materials -- The Road Ahead,"

asserts that continuous technical developments will result in fabrication of

new and self sustainable solutions in various market sectors.

"The design of a successful energy harvesting

module depends not only on the material's efficiency but also on the module

architecture, which could be the critical factor defining effectiveness,"

notes Frost & Sullivan analyst Krzysztof Grzybowski. "Developers must

place equal emphasis on material development and smart utilization."

Incentives from governments and non-profit

organizations have encouraged universities and industry participants to develop

newer alternative materials for energy harvesting.

Although the outlook for energy harvesting

materials looks upbeat, there are some challenges that have overshadowed the

landscape. High material prices have remained a spoke in the wheel for the

industry and limited the use of several materials.

Restrictions placed on the use of certain materials

intended for the development of energy harvesting devices due to environmental

concerns has also deterred the use of a good number of potential materials.

Within the piezoelectric (PE) materials, the most popular are the lead

composites such as lead zirconate titanate (PZT).The use of lead in these

energy harvesting materials has raised apprehensions.

Apart from this, the increasing consumption of

cadmium telluride for solar cell applications has diminished telluride

resources, rendering it an unfeasible alternative. This fact has also served to

rein in the growth of thermal energy-based harvesting, considering that bismuth

telluride is the predominantly used material for such applications.

"Recent trends in energy harvesting materials

point to an exponential increase in the commercialization interest in four harvesting

techniques -- PE, thermo-electric, EM, and photovoltaic (PV)," says

Grzybowski. "These techniques pertain to different layers of applications

such as electronics, automotive, medical, and aerospace, where each of these

diverse domains are assumed to be equally critical in defining today's and

tomorrow's energy harvesting."

Access other Control Engineering contentrelated to energy efficiency:

 

- Edited by David Greenfield , editorial director
Control Engineering Sustainable Engineering
News Desk





No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
2016 Engineering Leaders Under 40; Future vision: Where is manufacturing headed?; Electrical distribution, redefined
Strategic outsourcing delivers efficiency; Sleeve bearing clearance; Causes of water hammer; Improve air quality; Maintenance safety; GAMS preview
World-class maintenance: The three keys to success - Deploy people, process and technology; 2016 Lubrication Guide; Why hydraulic systems get hot
Flexible offshore fire protection; Big Data's impact on operations; Bridging the skills gap; Identifying security risks
The digital oilfield: Utilizing Big Data can yield big savings; Virtualization a real solution; Tracking SIS performance
Getting to the bottom of subsea repairs: Older pipelines need more attention, and operators need a repair strategy; OTC preview; Offshore production difficult - and crucial
Applying network redundancy; Overcoming loop tuning challenges; PID control and networks
Driving motor efficiency; Preventing arc flash in mission critical facilities; Integrating alternative power and existing electrical systems
Package boilers; Natural gas infrared heating; Thermal treasure; Standby generation; Natural gas supports green efforts

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role that compressed air plays in manufacturing plants.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me