Encoder calibration, safety audit

Women in engineering? Yes and no Re: Articles and postings on the skills gap and particularly women in engineering. I am a chemical engineer and my 20-year-old daughter is a chemical engineering student at the University of Michigan. She said that she got an early interest in science from watching Bill Nye—The Science Guy on television.


Women in engineering? Yes and no

Re: Articles and postings on the skills gap and particularly women in engineering.

I am a chemical engineer and my 20-year-old daughter is a chemical engineering student at the University of Michigan. She said that she got an early interest in science from watching Bill Nye—The Science Guy on television. She is doing well even though her high school physics teacher decided to skip the thermodynamics chapters in their book. I hope he listened when I explained to him later that thermo is one of the foundations of chemical engineering.

My younger daughter is still in high school, but is not considering engineering. One of her math teachers probably helped discourage kids by her own attitude about the material she was teaching. When she was explaining matrix multiplication, she told the class, “You’ll never use this.” Some of the people who do use it are the people who design atmospheric simulators and the rich kids who program video games.

John Kreinbrink, Process Engineer

Encoder calibration

Q : At the aerospace company where I work, all CNC systems that have incremental encoders are calibrated regularly and adjusted as required. We have robots in some of our thermal spraying cells that are not calibrated, but their motion repeatability is not as critical. We are planning a new robot-based processing system where repeatability and accuracy at the same time are important. The robot uses absolute encoders and goes through self-checks on each start-up. Therefore, the manufacturer states that no calibration is necessary. Is this your view?

Kartik Shanker, P.Eng.
Repair Development Engineer, Winnipeg, Manitoba

A : There are actually two issues here: process stability/accuracy, and machine safety. Depending on the encoder technology, regular calibration may not be necessary. You may, however, want to check system accuracy periodically in order to maintain the machine’s safety integrity level (SIL).

Many encoders, such as glass absolute encoders, use digital readouts of positions of mechanical structures (fiducials etched into the surface) that cannot be modified without damaging the encoder. That is, they do not “age” like most electronic components. Furthermore, they may be locked into position mechanically by keyways, etc., so they can’t slip out of position. In these cases, you may not need regular calibration to maintain process tolerances. The manufacturer is your best guide. Get it in writing, and also get a copy of the encoder’s calibration certificate. If there’s no calibration certificate, then any claims as to accuracy or repeatability are so much sales talk.

That, however, just covers the encoders themselves. They are not the only things that move. Robot arms can bend under repeated loads. Bearings can wear, becoming wobbly enough to violate motion tolerances. A good calibration program can uncover these problems as well.

Safety is another matter. Safety issues arise when talking about calibration because calibrating a piece of equipment will uncover most safety-related issues. Calibration engineers and technicians start their ministrations by doing a thorough safety check for their own self preservation. A calibrated piece of equipment is, within parameters set by the equipment’s original safety risk assessment, a safe piece of equipment.

Any robot—and that includes any moving machine under automatic control—is a potential safety hazard, and needs a thorough safety assessment before being deployed. ( Control Engineering has published many articles about machine safety and risk assessment; find them at www.controleng.com.) Part of the assessment should evaluate whether regular calibration is necessary to prevent a safety hazard.

A third concern arises when recommissioning a piece of equipment after maintenance, repair, or an extended idle period. Always have an experienced test engineer (which includes most maintenance engineers) conduct an acceptance test before letting any such piece of equipment loose in a factory. All kinds of things happen to moving equipment not in regular use, and during repair: Vital components disappear. Nuts, bolts, spacers that look like simple washers, and encoder disks get installed incorrectly. Things simply get bent or broken. Experienced test engineers know how to guard against unknown and unexpected failures on startup.

Simple things like knowing where and how to establish a safety perimeter, checking overhead for what might be damaged should a fire start, and knowing how to react when the unthinkable happens, are part of the test engineer’s mindset. Again, a system calibration check conducted during the acceptance test will uncover any such problems.

C.G. Masi, senior editor

Help support our program

As a high school science teacher who is the program director of my school’s FIRST robotics team, I would like to know how to get in touch with this group [of large industrial companies who support science and math in schools] to help support our program. I also host the FIRST Los Angles regional competition and can never get any of these big companies to step up and support the 60+ teams in the greater Los Angeles area. My e-mail is nmcintyre@chaminade.org .

Nancy McIntyre, nmcintyre@chaminade.org

Safety compliance question

Q : When a SIL4 system is required, and the system comprises various subsystems, is it sufficient to rely on the certification of the [subsystem and component] manufacturers, or does a user have a responsibility to audit the manufacturers in order to establish compliance? Is it necessary to engage an independent third party assessor?

Terry Vetier, taadvet@linkt.com.au
Systems Engineer, Australia

A : Generally speaking, safety certified products carry a conformance level certificate issued by an independent third party organization. The safety level of conformance could be SIL, Cat., or a new designation call performance level (PL). The third-party organization (i.e., TUV, BGIA, UL, FM, etc.) evaluates and certifies compliance to standards like IEC 61508, EN 954, IEC 61800, NFPA 79, UL 508, etc. This evaluation and certification process takes months, is quite costly, and is generally accepted as valid.

Considering the application and whether the safety certified products have been applied properly is a separate process. Risk assessment guides and standards typically advise or require that the risk assessment be updated following the application of protective measures (including safety certified products) to establish verification that identified hazards have been properly mitigated to acceptable levels. This usually applies to the application and not the safety certified product used in the application.

Generally speaking, it is acceptable to file the component manufacturer’s safety compliance certificate as part of the overall documents maintained for reference. Additional information can be found on www.SafetyBase.com or you can contact me directly.

J.B. Titus, Certified Safety Professional
Siemens, Norcross, GA

The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
Doubling down on digital manufacturing; Data driving predictive maintenance; Electric motors and generators; Rewarding operational improvement
2017 Lubrication Guide; Software tools; Microgrids and energy strategies; Use robots effectively
Prescriptive maintenance; Hannover Messe 2017 recap; Reduce welding errors
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Research team developing Tesla coil designs; Implementing wireless process sensing
Commissioning electrical systems; Designing emergency and standby generator systems; Paralleling switchgear generator systems
Natural gas engines; New applications for fuel cells; Large engines become more efficient; Extending boiler life

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me