Emissions standards drive automotive powertrain silicon sensors past $1 billion

The global market for automotive powertrain silicon sensors crossed the $1 billion threshold at the end of 2013, with stricter emission standards in the U.S. as well as Europe projected to drive the market forward, according to a new report from IHS Inc.

01/06/2014


The global market for automotive powertrain silicon sensors crossed the $1 billion threshold at the end of 2013, with stricter emission standards in the U.S. as well as Europe projected to drive the market forward, according to a new report from IHS Inc.

Sensor revenue in vehicle powertrain applications is set to reach $1.03 billion by year-end measured at first-level package, up 7% from $964.5 million in 2012. Revenue will continue to grow at rates ranging from 5% to 7% during the next four years, on its way to some $1.28 billion by 2017.

Figure 1: Global revenue forecast for silicon sensors in vehicle powertrain applications. Source: IHS Inc."Although vehicles today produce considerably less pollution than 20 years ago, significant advancements continue to be made by car manufacturers in engine-out emissions and exhaust after-treatment technologies," said Richard Dixon, Ph.D., senior principal analyst for MEMS and sensors at IHS. "These improvements have been carried out as a result of mandated legislation in areas like the U.S., Japan and Western Europe, aimed at lowering carbon emissions in vehicles to help reduce global warming."

Such emission-reduction systems are used on all types of vehicles in mature markets. For example, established oxygen catalysts in diesel engines and three-way catalysts in gasoline engines are particularly effective at removing hydrocarbons, nitrogen oxide and carbon dioxide. But legislation is especially targeting diesel engines, which make up 50% of the European market, Dixon noted.

While the high fuel efficiency of diesel engines explains their popularity, it is also the engine type requiring the most treatment due to a combination of poisonous nitrogen oxide gases and particle matter (soot) produced during the combustion process. Methods to reduce these pollutants like cooled exhaust gas recirculation (EGR), diesel particle filters and selective catalytic reduction systems require sensors for control but also to monitor their performance, Dixon added.

Other systems exploited by vehicle manufacturers in the fight to meet future tougher emission-control standards include stop-start systems and gasoline particle filters.

In stop-start systems, the engine turns off when a car stops at a junction or stoplight. Stop-start systems use a combination of wheel-speed sensors to ascertain if the vehicle has stopped, with switches that determine if the clutch or brake has been actuated and the gear is in neutral position, while pressure sensors measure the vacuum generated in the braking system under a stopped engine condition. A current sensor is also deployed to determine if the battery condition is sufficient to handle the restart of the car. Considerable fuel—and thus, carbon dioxide savings—can be made in this fashion. Stop-start systems will grow very fast in the years ahead, with penetration in vehicle to reach well over 30% by 2017.

Meanwhile, the use of gasoline particle (GPF) filters may impact European car makers in the future. GPFs are effective at removing soot particles from a gasoline direct-injection engine in the same manner as a filter in a diesel engine. GDI engines produce higher nitrogen oxide than standard gasoline engines, and removing this poisonous gas produces the similarly dangerous soot. GPFs are being considered to meet the new targets on particle emissions in Euro 6 legislation. A pressure sensor monitoring the filter is one application for silicon, even though other sensors monitoring particle mass will also be important.

Other systems that will make use of sensors to help in the emissions-reduction effort include:

  • In-cylinder pressure sensors, useful in regulating conditions in combustion. IHS sees these devices, projected to include one sensor per cylinder, as important in the future, especially for diesel vehicles. Companies like Volkswagen and Daimler are already deploying these sensors in new models.
  • Oil pressure sensors, in order to monitor leakages in the crankcase—itself under pressure.
  • Evaporative fuel sensors—mostly used in the United States, but European markets are utilizing systems to store and later release evaporated fuel from fuel lines and fuel tanks, to be burned in the engine.
  • New SCR systems, used on high-end diesels like Mercedes- Benz E-class cars, which need pressure sensors to monitor the contents of a separate tank supplying ammonia into the exhaust system to reduce nitrogen oxide emissions.

Meanwhile EGR systems show only light growth for pressure sensors. Most of the information for EGR systems today is provided by knowledge of the valve position that bleeds in exhaust gas to mix with air and fuel in the cylinder, and temperature to show the start of EGR gas flow. Pressure sensors can provide additional value by giving details of the flow rate, but that is the exception at present.



The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
A new approach to the Skills Gap; Community colleges may hold the key for manufacturing; 2017 Engineering Leaders Under 40
Doubling down on digital manufacturing; Data driving predictive maintenance; Electric motors and generators; Rewarding operational improvement
2017 Lubrication Guide; Software tools; Microgrids and energy strategies; Use robots effectively
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Power system design for high-performance buildings; mitigating arc flash hazards
Research team developing Tesla coil designs; Implementing wireless process sensing
Commissioning electrical systems; Designing emergency and standby generator systems; Paralleling switchgear generator systems

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me