Emissions standards drive automotive powertrain silicon sensors past $1 billion

The global market for automotive powertrain silicon sensors crossed the $1 billion threshold at the end of 2013, with stricter emission standards in the U.S. as well as Europe projected to drive the market forward, according to a new report from IHS Inc.


The global market for automotive powertrain silicon sensors crossed the $1 billion threshold at the end of 2013, with stricter emission standards in the U.S. as well as Europe projected to drive the market forward, according to a new report from IHS Inc.

Sensor revenue in vehicle powertrain applications is set to reach $1.03 billion by year-end measured at first-level package, up 7% from $964.5 million in 2012. Revenue will continue to grow at rates ranging from 5% to 7% during the next four years, on its way to some $1.28 billion by 2017.

Figure 1: Global revenue forecast for silicon sensors in vehicle powertrain applications. Source: IHS Inc."Although vehicles today produce considerably less pollution than 20 years ago, significant advancements continue to be made by car manufacturers in engine-out emissions and exhaust after-treatment technologies," said Richard Dixon, Ph.D., senior principal analyst for MEMS and sensors at IHS. "These improvements have been carried out as a result of mandated legislation in areas like the U.S., Japan and Western Europe, aimed at lowering carbon emissions in vehicles to help reduce global warming."

Such emission-reduction systems are used on all types of vehicles in mature markets. For example, established oxygen catalysts in diesel engines and three-way catalysts in gasoline engines are particularly effective at removing hydrocarbons, nitrogen oxide and carbon dioxide. But legislation is especially targeting diesel engines, which make up 50% of the European market, Dixon noted.

While the high fuel efficiency of diesel engines explains their popularity, it is also the engine type requiring the most treatment due to a combination of poisonous nitrogen oxide gases and particle matter (soot) produced during the combustion process. Methods to reduce these pollutants like cooled exhaust gas recirculation (EGR), diesel particle filters and selective catalytic reduction systems require sensors for control but also to monitor their performance, Dixon added.

Other systems exploited by vehicle manufacturers in the fight to meet future tougher emission-control standards include stop-start systems and gasoline particle filters.

In stop-start systems, the engine turns off when a car stops at a junction or stoplight. Stop-start systems use a combination of wheel-speed sensors to ascertain if the vehicle has stopped, with switches that determine if the clutch or brake has been actuated and the gear is in neutral position, while pressure sensors measure the vacuum generated in the braking system under a stopped engine condition. A current sensor is also deployed to determine if the battery condition is sufficient to handle the restart of the car. Considerable fuel—and thus, carbon dioxide savings—can be made in this fashion. Stop-start systems will grow very fast in the years ahead, with penetration in vehicle to reach well over 30% by 2017.

Meanwhile, the use of gasoline particle (GPF) filters may impact European car makers in the future. GPFs are effective at removing soot particles from a gasoline direct-injection engine in the same manner as a filter in a diesel engine. GDI engines produce higher nitrogen oxide than standard gasoline engines, and removing this poisonous gas produces the similarly dangerous soot. GPFs are being considered to meet the new targets on particle emissions in Euro 6 legislation. A pressure sensor monitoring the filter is one application for silicon, even though other sensors monitoring particle mass will also be important.

Other systems that will make use of sensors to help in the emissions-reduction effort include:

  • In-cylinder pressure sensors, useful in regulating conditions in combustion. IHS sees these devices, projected to include one sensor per cylinder, as important in the future, especially for diesel vehicles. Companies like Volkswagen and Daimler are already deploying these sensors in new models.
  • Oil pressure sensors, in order to monitor leakages in the crankcase—itself under pressure.
  • Evaporative fuel sensors—mostly used in the United States, but European markets are utilizing systems to store and later release evaporated fuel from fuel lines and fuel tanks, to be burned in the engine.
  • New SCR systems, used on high-end diesels like Mercedes- Benz E-class cars, which need pressure sensors to monitor the contents of a separate tank supplying ammonia into the exhaust system to reduce nitrogen oxide emissions.

Meanwhile EGR systems show only light growth for pressure sensors. Most of the information for EGR systems today is provided by knowledge of the valve position that bleeds in exhaust gas to mix with air and fuel in the cylinder, and temperature to show the start of EGR gas flow. Pressure sensors can provide additional value by giving details of the flow rate, but that is the exception at present.

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Safety for 18 years, warehouse maintenance tips, Ethernet and the IIoT, GAMS 2016 recap
2016 Engineering Leaders Under 40; Future vision: Where is manufacturing headed?; Electrical distribution, redefined
Strategic outsourcing delivers efficiency; Sleeve bearing clearance; Causes of water hammer; Improve air quality; Maintenance safety; GAMS preview
SCADA at the junction, Managing risk through maintenance, Moving at the speed of data
Safety at every angle, Big Data's impact on operations, bridging the skills gap
The digital oilfield: Utilizing Big Data can yield big savings; Virtualization a real solution; Tracking SIS performance
Applying network redundancy; Overcoming loop tuning challenges; PID control and networks
Driving motor efficiency; Preventing arc flash in mission critical facilities; Integrating alternative power and existing electrical systems
Package boilers; Natural gas infrared heating; Thermal treasure; Standby generation; Natural gas supports green efforts

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role of plant safety and offers advice on best practices.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me