Embedded systems in a connected world

Engineering and IT Insight: Embedded systems are often mechanically connected to other systems, and planning for network connectivity will allow them to also be electronically connected. See 8 requirements to add for embedded system design.

03/21/2013


Controls and IT Integration, Control EngineeringDeveloping embedded systems in an Ethernet connected world adds complexity to an already complex task. We are a long way from the days when the primary problem in an embedded system was to determine which inputs forced which outputs in a ladder logic diagram, what timers were needed, and what safety interlocks were needed. Today, embedded system developers often follow software engineering principles. They are using object-based designs based on formal unified modeling language (UML) state models and sequence diagrams. Each physical device in the system is represented as a device object (a control module) with a distinct behavior, command inputs, and status or data outputs. The device objects are aggregated into larger objects (equipment modules) with their own controlling sequences, behaviors, inputs, and outputs.

Defining a network interface was often a secondary consideration when an embedded system design was focused only on inputs and outputs without a formal structure. If an interface was provided at all, it was usually a simple listing of PLC addresses that could be used to modify the behavior or provide limited visibility. Today, with end users specifying standard connections through Ethernet and TCP/IP, the old approach no longer works. End users in a connected world need interfaces in their embedded systems for data collection, configuration, maintenance troubleshooting, and coordination control with other embedded systems. End users also want standard interfaces, so that integrating embedded systems into their overall production environments are not custom projects.

Incompatible standards

Several incompatible standards exist for interfaces, including PackML that defines a set of standard tag names for machine automation and control, MTConnect that defines a standard read-only interface for machine tools and equivalent systems, OPC-UA that defines a web-based interface for industrial control, EtherNet/IP that defines tag an object network interface, and Profinet that provides Profibus-like access across Ethernet networks. The best choice today is to pick a standard that is well accepted in your industry and to not develop your own proprietary interface. All of the above standard interfaces are based on object models, and all are based on some form of Ethernet TCP/IP network because of the cost and support benefits from using commonly available networking equipment.

8 embedded requirements

No matter which standard you chose for your embedded system interfaces, consider adding the following requirements:

1) Support the Ethernet TCP/IP communication standard protocols. TCP/IP will be around for a long time and will continue to be the standard protocol for the foreseeable future. Even when the embedded system has reached its end of life, you still should be able to effectively communicate with it in the TCP/IP protocol.

2) Support the IPv6 Ethernet standard. This is the new standard for Ethernet addressing, replacing the original IPv4 standard that has run out of Ethernet addresses. Embedded systems have lifetimes of dozens of years, so supporting the IPv6 will enable your system to continue to communicate as networks grow in complexity and become more pervasive.

3) Put the embedded device behind a firewall or within its own protected network. Security will always be an issue, and it is important to protect the embedded device from directed attacks and incidental disruption due to nondirected cyber attacks.

4) Support a wireless interface with WPA or WPA2 security. Equipment is often moved around during its lifetime, and many times the cost and time of running additional network cables through a production environment is large. Providing a wireless interface simplifies production rearrangements without requiring IT to come in and run more cables. New wireless standards have sufficient throughput and redundancy for most industrial applications and should be an option for our embedded systems.

5) Ensure that all unused Ethernet ports on the embedded system are closed. This will eliminate at least one security risk. It is also important to test port access in your acceptance tests. Use a simple port scanning tool to identify which ports are open on the device, and use the results to configure firewalls and switches to block any unused but open ports.

6) Expose the top-level control objects through the interface for data collection, control, and configuration. A good design will have interface objects that should be used for normal control and data acquisition and an interface to other objects for maintenance and troubleshooting.

7) Do not allow remote configuration unless there is a physical key or switch that can be used to lock out access. Any remote access provides a route for a cyber attack. You can reduce this risk by requiring physical access to the device before it can be reconfigured.

8) Provide the device documentation through an embedded web page or PDF file. While many companies are diligent about keeping support manuals available, the documents may still be hard to find and can delay troubleshooting and repairs. Providing the support documents on-line, within the embedded system, will be an invaluable help after a vendor has made the system obsolete or is no longer in business.

In today’s world, to paraphrase John Donne’s 1624 famous prose, “no embedded system is an island entire to itself.” Embedded systems are often mechanically connected to other systems, and planning for network connectivity will allow them to also be electronically connected. It is important to ensure that your embedded systems will work with your entire production system and manufacturing IT infrastructure for as long as needed.

- Dennis Brandl is president of BR&L Consulting in Cary, N.C., www.brlconsulting.com. His firm focuses on manufacturing IT. Contact him at dbrandl@brlconsulting.com. Edited by Mark T. Hoske, content manager, CFE Media, Control Engineering and Plant Engineering, mhoske@cfemedia.com.



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
2016 Product of the Year; Diagnose bearing failures; Asset performance management; Testing dust collector performance measures
Safety for 18 years, warehouse maintenance tips, Ethernet and the IIoT, GAMS 2016 recap
2016 Engineering Leaders Under 40; Future vision: Where is manufacturing headed?; Electrical distribution, redefined
SCADA at the junction, Managing risk through maintenance, Moving at the speed of data
Safety at every angle, Big Data's impact on operations, bridging the skills gap
The digital oilfield: Utilizing Big Data can yield big savings; Virtualization a real solution; Tracking SIS performance
Applying network redundancy; Overcoming loop tuning challenges; PID control and networks
Driving motor efficiency; Preventing arc flash in mission critical facilities; Integrating alternative power and existing electrical systems
Package boilers; Natural gas infrared heating; Thermal treasure; Standby generation; Natural gas supports green efforts

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role of plant safety and offers advice on best practices.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me