Electrical enclosures: not just a box anymore

The ideal electrical enclosure should install and remove easily, protect valuable equipment, allow the housed components to be accessed easily, and resist environmental hazards. The key steps in determining the best enclosure include assessing the building's environment, the electrical equipment's protection and size requirements, and the accessibility needed for time- and cost-efficient mainte...

02/01/2008


The ideal electrical enclosure should install and remove easily, protect valuable equipment, allow the housed components to be accessed easily, and resist environmental hazards. The key steps in determining the best enclosure include assessing the building's environment, the electrical equipment's protection and size requirements, and the accessibility needed for time- and cost-efficient maintenance and service. By identifying the required demands, engineers can simply and accurately specify an optimal electrical enclosure to provide dependable protection and long operational life.

The most important step is to consider the enclosure's environment. First, in order to determine the resistance needed, evaluate the environmental contaminants that could potentially harm the electronics and/or enclosure, including dust, dirt, and other debris; water in washdown environments; and harsh chemicals and UV light. The temperature both inside and outside of the enclosure is a key environmental factor to consider as well. Plus, invisible hazards such as electromagnetic or radio frequency interference also can obstruct equipment operation, and busy industrial environments may result in accidental impact or shock, damaging improperly protected electrical components.

Because some components are more susceptible to damage than others, note whether the application involves sensitive electronics—requiring significant protection—or moreresistant electric switches and relays. Enclosures are developed in various materials, many of which effectively resist corrosion and protect equipment in harsh applications. Enclosures are available with keylocking and padlocking systems to deliver additional equipment security.

Electrical equipment must be protected while remaining accessible. Anticipating the frequency of maintenance will help determine which additional enclosure features your application requires. Removable panels, double-hinged doors, and data interface ports assist in streamlining equipment maintenance.

Additionally, enclosures are available in horizontal, low-profile, wall-mount, and several additional models to integrate seamlessly into a variety of floor plans while providing operators with improved ergonomics and equipment accessibility.

Periodic enclosure inspection ensures proper performance in the environment and protection against electric shock. Where applicable, check the gasket for compression set, the latching to make certain the door seals properly, and the door interlock to ensure the accessibility meets the requirements. Also check the enclosure for corrosion and make sure all the conductive parts are properly bonded. Replacement parts and accessories, such as touch-up paint, are available from most enclosure manufacturers to enhance product life.

Common enclosure requirements are found in the National Fire Protection Association (NFPA 70, also known as National Electric Code, NFPA 79) National Electrical Manufacturers Assn. (NEMA 250), Underwriters Laboratories (UL 50, UL 508A), Canadian Standards Assn. (CSA 22.2), and International Electrotechnical Commission (IEC 60529). North American practice is to match the environmental protection requirement to a specific enclosure Type rating.

The most common Type ratings are:

  • Type 1: Enclosures are intended for indoor use, primarily to provide a degree of protection against contact with the enclosed equipment or locations where unusual service conditions don't exist.

  • Type 3R: Enclosures are intended for outdoor use, primarily to provide a degree of protection against falling rain and sleet; they are undamaged by the formation of ice on the enclosure.

  • Type 4: Enclosures are intended for indoor or outdoor use, primarily to provide a degree of protection against windblown dust and rain, splashing water, and hose-directed water; they are undamaged by the formation of ice on the enclosure.

  • Type 4X: Enclosures are intended for indoor or outdoor use, primarily to provide a degree of protection against corrosion, windblown dust and rain, splashing water, and hose-directed water; they are undamaged by the formation of ice on the enclosure.

  • Type 12: Enclosures are intended for indoor use, primarily to provide a degree of protection against dust, falling dirt, and dripping non-corrosive liquids.

Third party listing from UL/CSA ensures that the selected type rated enclosure is performance tested for ingress, bonding, and corrosion, and that it meets additional construction requirements for minimum metal thickness, latching, and coating finishing.

The size and mounting requirements of the application's electronics also are critical to determining a proper fit. Engineers should calculate the minimum height, width, and depth that the equipment requires, including wire bend space, and note any space and installation limitations in the application area.


Author Information

Glen Kampa is program manager with Hoffman, Anoka, Minn.




No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
World-class maintenance: The three keys to success - Deploy people, process and technology; 2016 Lubrication Guide; Why hydraulic systems get hot
Your leaks start here: Take a disciplined approach with your hydraulic system; U.S. presence at Hannover Messe a rousing success
Hannover Messe 2016: Taking hold of the future - Partner Country status spotlights U.S. manufacturing; Honoring manufacturing excellence: The 2015 Product of the Year Winners
The digital oilfield: Utilizing Big Data can yield big savings; Virtualization a real solution; Tracking SIS performance
Getting to the bottom of subsea repairs: Older pipelines need more attention, and operators need a repair strategy; OTC preview; Offshore production difficult - and crucial
Digital oilfields: Integrated HMI/SCADA systems enable smarter data acquisition; Real-world impact of simulation; Electric actuator technology prospers in production fields
Improving flowmeter calibration; Selecting flowmeters for natural gas; Case study: Streamlining assembly systems using PC-based control; CLPM: Improving process efficiency, throughput
Putting COPS into context; Designing medium-voltage electrical systems; Planning and designing resilient, efficient data centers; The nine steps of designing generator fuel systems
Warehouse winter comfort: The HTHV solution; Cooling with natural gas; Plastics industry booming

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role that compressed air plays in manufacturing plants.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me