Effective energy management  saves money, the environment

Energy can be effectively managed through a thorough examination of a plant's process or processes

05/01/2009


Energy costs can be lowered in many ways, and using components such as high-efficiency motors and variable-frequency drives to do so are good starts to any energy-management program. But real success can be derived from taking a broad view and looking beyond these established methods. How else can energy be effectively managed to create savings and optimize production?
What it takes is a thorough examination of a plant's process or processes. It also requires committed leadership, good decision making and consistent oversight to address the outcome of that examination. Fortunately, simple and effective energy management strategies typically share six common components.

Step 1: Authoritative leadership
The optimal energy management program is a broad-based, multidisciplinary effort requiring a sustained commitment. The program driver must have an interest in profit and loss and must have the authority to implement change. The goal here is long-term operating efficiency rather than short-term savings, so it makes sense that the program champion should come from plant management. Successful programs are typically spearheaded by a corporate energy czar, or a plant manager with support from senior management to help drive the program forward.

Step 2: Look beyond first cost
The problem that short-circuits many programs is that they often require an increased investment in upgraded systems or components in order to achieve energy savings. However, as the saying goes, you have to spend money to make money. The purchase price of a motor typically represents only 2% of its total lifecycle cost. Most of a motor's total cost of ownership - 97% - goes toward operating energy.
Problems looking beyond the first cost arise when stakeholders are not able to appreciate the benefits of the improved technology. Here is where a strong program leader can educate and align the vision of the team toward a unified, long-term viewpoint. When the vision is clear and system specifications are established (for example, for high- efficiency gearboxes), conflict between plant engineers, purchasing agents and others is minimized. Each can do their job to contribute.

Step 3: Make good component decisions
Users could be making a good or bad energy management decision any time components are replaced or specified. Most of today's energy-efficient products pay for themselves over time, but it's important to check the numbers based on the projected use and lifecycle of the component.
Making the switch to premium- efficiency motors is a great place to start, but users can also realize considerable return on investment by making good decisions in other areas. Taking advantage of energy- efficient gearboxes, belts, synthetic lubricants and LED lighting technology where appropriate can bring considerable savings to energy management efforts.

Step 4: Optimize and right-size systems
Familiar equipment commonly found in manufacturing facilities such as blowers, pumps, air compressors, hydraulic systems, dust collectors and chillers are often taken for granted. The question is, do they follow best practices based on current energy standards? Each of these systems can usually be optimized without difficulty, often with support from the distributor or equipment manufacturer.
Be sure that systems are right-sized as well. Over-sizing equipment is a common affliction based on a "just to be sure" philosophy. Over-sizing is actually an accumulative process brought about by "designing for future capacity," or through design uncertainty, leading to the use of additional safety factors. Someone with a practical perspective on manufacturing requirements should watch over the process to ensure the final system is properly sized.

Step 5: Run equipment on demand
Walk through any plant without a vision for energy management and one will see equipment running without doing work. Duty cycle - the amount of time equipment is actually working divided by total operating time - can reach levels as low as 25%. The fix for this is simple: turn equipment off or slow it down when it is not doing work.
Using fixed-speed motors and then regulating their output with mechanical devices is like running your home furnace continuously and opening windows to regulate the temperature in the house. Adding VFDs to fixed-speed systems and running equipment on demand are two simple ways to significantly reduce energy costs in manufacturing.

Step 6: Monitor maintenance
Improper maintenance can erode the bottom line of an energy management program. Dirty air filters add load to fan motors, and compressed air systems can develop leaks over time. Improperly tensioned and aligned V-belts can reduce transfer efficiency from 97% to 88%.
While it's helpful to divide energy management programs into six basic elements, it's impossible for them not to be intertwined - and the benefits are cumulative. In the end, successful programs will drive all the elements with authority, and with the knowledge that the best return will come from a coordinated and sustained effort.

Ted Clayton is an automation program manager for Kaman Industrial Technologies.

Visit PlantEngineering.com for a case study on an energy management program centered on motor management and implemented by Kodak. Keyword: Kodak





No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Strategic outsourcing delivers efficiency; Sleeve bearing clearance; Causes of water hammer; Improve air quality; Maintenance safety; GAMS preview
World-class maintenance: The three keys to success - Deploy people, process and technology; 2016 Lubrication Guide; Why hydraulic systems get hot
Your leaks start here: Take a disciplined approach with your hydraulic system; U.S. presence at Hannover Messe a rousing success
Flexible offshore fire protection; Big Data's impact on operations; Bridging the skills gap; Identifying security risks
The digital oilfield: Utilizing Big Data can yield big savings; Virtualization a real solution; Tracking SIS performance
Getting to the bottom of subsea repairs: Older pipelines need more attention, and operators need a repair strategy; OTC preview; Offshore production difficult - and crucial
Applying network redundancy; Overcoming loop tuning challenges; PID control and networks
Putting COPS into context; Designing medium-voltage electrical systems; Planning and designing resilient, efficient data centers; The nine steps of designing generator fuel systems
Package boilers; Natural gas infrared heating; Thermal treasure; Standby generation; Natural gas supports green efforts

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role that compressed air plays in manufacturing plants.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me