Economics of Fault-Tolerant Fieldbus Wiring

It's ironic: Network cables in a safe and well-managed control room environment are almost always made redundant, whereas field cables exposed to the harsh and sometimes corrosive environment of a modern industrial plant have to fend for themselves. Of course, if those field cables carry simple point-to-point communications such as 4-20 mA, then redundancy isn't really a concern in general, and...


It's ironic: Network cables in a safe and well-managed control room environment are almost always made redundant, whereas field cables exposed to the harsh and sometimes corrosive environment of a modern industrial plant have to fend for themselves. Of course, if those field cables carry simple point-to-point communications such as 4-20 mA, then redundancy isn't really a concern in general, and specific devices can be duplicated as required. However, now that the lowest fieldbus physical layer carries data from up to 32 devices, the vulnerability of that cable can constitute a reliability issue, particularly if those devices are safety-related or process-critical. Conventional Foundation Fieldbus (FF) segment design does not lend itself to any version of fault-

Duplex wiring is typically the
Duplex wiring is typically the "conventional" approach but does not offer nearly the protection of fault-tolerant wiring. Data on cable failures in industrial environments used for MTBF calculations comes from "Reliability, Maintainability and Risk" 7th Edition, Dr. David J. Smith

tolerance except through complete and wholesale duplication. In a fieldbus context, that duplication brings with it special software requirements to implement one-out-of-two and two-out-of-three voting schemes and special measures required for safe maintenance, device replacement, etc.

In late 2007, MooreHawke Fieldbus released a new fault-tolerant segment design that permits a far higher segment MTBF (mean time between failure) than conventional designs without any special software in the DCS and for only the additional cost of an extra trunk cable. Working with a major DCS provider and a large oil & gas end user, this package was installed on a set of platforms in the South China Sea simply to mitigate the huge financial risk associated with loss of control. The question is, does this increase in availability really make a significant difference to the economics of a general fieldbus installation?

The answer is not a simple yes or no, because a fault-tolerant system allows a user to make permutations that match the desire for high plant availability against budget restrictions for the systems hardware. These available permutations (simplex vs. duplex vs. fault-tolerant) were simply not possible in previous fieldbus physical layer products.

A hypothetical example

Let's base an analysis on a hypothetical plant with 120 segments, or about 1440 fieldbus instruments, such as flow transmitters, valve controllers, etc. We should divide these into groups based on how many segments are related to control of the plant, and how many are simple monitoring. Let's say that 80 segments are monitoring-only and 40 segments have control. Of the 40 control segments, let's say that 12 segments have loops which are process-critical — failure in any of those segments would cause immediate plant shut-down or scrap product.

Total segments120
Monitoring only80
Control related28
Critical control12

Let's assume the following prices for fieldbus equipment. (Current MooreHawke prices are quoted, but these are comparable with similar systems from other suppliers.)

$390Power Conditioner
$240Carrier, 4-segment, simplex
$320Carrier, 4-segment, duplex
$280Carrier, 4-segment, fault-tolerant
$450Diagnostics module, standard
$350TrunkGuard coupler, 12-spur
$700TrunkSafe coupler, 12-spur
$500Trunk cable

We can now start to compare costs between the conventional design and the new approach.

30x$320Carriers, 4-segment, duplex (1 per 4 segments)
240x$390Power conditioners (2 per segment)
30x$450Diagnostics module, standard (1 per 4 segments)
120x$350TrunkGuard coupler, 12-spur (1 per segment)
120x$500Trunk cable (1 per segment)
Total (conventional) $218,700

This approach for 120 segments uses 240 power conditioners (see graphic) with two on each segment following a common practice. While this is reasonable for some segments, it can be considered overkill for those that are performing only non-critical monitoring functions, particularly given the cost of each unit. At the same time, it does not offer the same level of availability for critical control loops as the fault-tolerant approach. The new thinking is, use duplex power conditioners only where they are truly necessary.

New optimized approach

The new approach optimizes hardware application in a way that uses duplication and fault-tolerant capabilities where they are most needed, which can reduce the overall cost of hardware depending on process requirements.

20x$240Carrier, 4-segment, simplex (1 per 4 segments)
80x$390Power conditioner (1 per segment)
20x$450Diagnostics module, standard (1 per 4 segments)
80x$350TrunkGuard coupler, 12-spur (1 per segment)
80x$500Trunk cable (1 per segment)
28 conventional (duplex) segments:
7x$320Carrier, 4-segment, duplex (1 per 4 segments)
56x$390Power conditioner (2 per segment)
7x$450Diagnostics module, standard (1 per 4 segments)
28x$350TrunkGuard coupler, 12-spur (1 per segment)
28x$500Trunk cable (1 per segment)
12 fault-tolerant segments:
6x$280Carrier, 4-segment, fault-tolerant (2 per 4 segments)
24x$390Power conditioner (2 per segment)
6x$450Diagnostics module, standard (2 per 4 segments)
12x$700TrunkSafe coupler, 12-spur (1 per segment)
24x$500Trunk cable (2 per segment)
Total (new approach) $198,170

The conventional approach for 120 segments takes 240 power conditioners. The new approach allows savings for the 80 monitoring-only (simplex) segments as these have only one power conditioner. (Of course, the conventional system could also fit single power conditioners, but since they have duplex carriers, two power conditioners are frequently fitted as a matter of routine.)

Simplex wiring is adequate for non-critical monitoring segments. It eliminates the second power conditioner, but doesn
Simplex wiring is adequate for non-critical monitoring segments. It eliminates the second power conditioner, but doesn't reduce MTBF all that drastically.

The duplex segments have dual power conditioners, and the fault-tolerant segments also have two power conditioners but they are physically separated onto different carriers and connected to the field through two cables. In total, the new approach has 160 power conditioners rather than 240.

The net result is that this new approach leads to somewhat lower costs, even when allowing for the additional trunk cable used in the fault-tolerant segment layouts. The savings may be greater still. Many end-user specifications restrict process-critical segments (commonly defined as “level 1 criticality”) to having just one valve and one transmitter in that segment. It seems ridiculous to install a fieldbus segment with just two devices, but in the conventional single-trunk configuration, that is deemed necessary to minimize the risk of accidental plant shutdown

Adding fault-tolerant wiring is more expensive, but the increase in availability is huge. When used for process-critical segments, the cost justification is clear.
Adding fault-tolerant wiring is more expensive, but the increase in availability is huge. When used for process-critical segments, the cost justification is clear.

Failure analysis

Since we are comparing a conventional fieldbus physical layer with a fault-tolerant physical layer, we can effectively ignore all other sources of plant stoppage (blocked lines, primary power outage, pump seal failure, etc.) in this analysis. We are concerned only with the cost incurred if a fieldbus power conditioner or segment cable fails.

Let's assume that a spurious trip in a plant of this size costs $250,000. The spurious trip rate of a standard fieldbus system is estimated as once every 5 years, and the spurious trip rate resulting from a failure in the fault-tolerant fieldbus system is estimated once every 25 years (we can demonstrate that the fault-tolerant design generates a 10-fold improvement in segment MTBF, so assuming only a five-fold improvement is conservative).

The annual cost of spurious trips for the conventional plant is $250,000 / 5 years = $50,000 / year. The annual cost for a fault-tolerant plant is $250,000 / 25 years = $10,000 / year. The potential benefit is therefore $40,000 / year.

Another analysis concerns the cost benefit over the investment lifecycle of any plant, which modern technology has reduced to something like 10 years. In this case, the fault-tolerant system represents a CAPEX saving ($218,700 - 198,170 = $20,530) which generates $33,441 at, say, 5% for 10 years.

CAPEX return:$33,441 (savings in capital expense)
OPEX return:$400,000 (savings in spurious trips)
Total:$433,441 (additional “free” income over 10 years)

This is, of course, a very simplified argument. I am no accountant, so all the assumptions should be re-interpreted by your financial and operations managers. For example, there is no break-out of system design time, maintenance, repairs, spare parts, etc. However, the fault-tolerant system discussed here does not demand any specialized attention over the standard system, nor does it require any additional design and service costs. No special software is required, and the same power conditioner is used throughout.

The only difference is that the fault-tolerant segments should be tested once a year, typically by unplugging one of the power conditioners or its cable, to demonstrate that the segment and associated process continues to operate even with one failure. This testing helps justify the low probability of failure on demand claimed for the fault-tolerant segments.

It seems very clear that this new approach to segment design does not necessarily increase costs over a conventional design. On the contrary, when the concept is properly applied, it actually costs less. The resulting improvement in real plant availability creates still greater benefit for the plant operator, and the positive cash flow generated is both dramatic and undisputable. Prospective fieldbus users now have further evidence that Foundation Fieldbus technology can be an advantage for their plant and their management, and the uptake rate may increase further, across the landscape of industrial networking & process control.

Author Information
Mike O'Neill is director, MooreHawke division of Moore Industries. Reach him at .

The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
Doubling down on digital manufacturing; Data driving predictive maintenance; Electric motors and generators; Rewarding operational improvement
2017 Lubrication Guide; Software tools; Microgrids and energy strategies; Use robots effectively
Prescriptive maintenance; Hannover Messe 2017 recap; Reduce welding errors
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Research team developing Tesla coil designs; Implementing wireless process sensing
Commissioning electrical systems; Designing emergency and standby generator systems; Paralleling switchgear generator systems
Natural gas engines; New applications for fuel cells; Large engines become more efficient; Extending boiler life

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me