Drones relay RFID signals for inventory control

MIT researchers have developed a system that enables aerial drones to read radio frequency ID (RFID) tags from tens of meters away while identifying the tags’ locations with a small error window. The system is designed for use used in large warehouses for both continuous monitoring to prevent inventory mismatches and the ability to locate individual items.

09/03/2017


MIT researchers have developed a system that enables small, safe, aerial drones to read RFID tags in large warehouses at a distance of several meters, while identifying the tags’ locations with an average error of about 19 cm. Courtesy: Massachusetts Institute of TechnologyRadio frequency ID (RFID) tags were supposed to revolutionize supply chain management. The dirt-cheap, battery-free tags, which receive power wirelessly from scanners and then broadcast identifying numbers, enable warehouse managers to log inventory much more efficiently than they could by reading box numbers and recording them manually.

The scale of modern retail operations makes even RFID scanning inefficient. Walmart, for instance, reported that in 2013 it lost $3 billion in revenue because of mismatches between its inventory records and its stock. Even with RFID technology, it can take a single large retail store three months to perform a complete inventory review, which means that mismatches often go undiscovered until exposed by a customer request.

MIT researchers have developed a system that enables small, safe, aerial drones to read RFID tags from tens of meters away while identifying the tags' locations with an average error of about 19 cm. The researchers envision that the system could be used in large warehouses for both continuous monitoring, to prevent inventory mismatches, and location of individual items, so that employees can rapidly and reliably meet customer requests.

The central challenge in designing the system was that, with the current state of autonomous navigation, the only drones safe enough to fly within close range of humans are small, lightweight drones with plastic rotors, which wouldn't cause injuries in the event of a collision. But those drones are too small to carry RFID readers with a range of more than a few centimeters.

The researchers met this challenge by using the drones to relay signals emitted by a standard RFID reader. This not only solves the safety problem but also means that drones could be deployed in conjunction with existing RFID inventory systems, without the need for new tags, readers, or reader software.

"Between 2003 and 2011, the U.S. Army lost track of $5.8 billion of supplies among its warehouses," said Fadel Adib, the Sony Corporation Career Development Assistant Professor of Media Arts and Sciences, whose group at the MIT Media Lab developed the new system. "In 2016, the U.S. National Retail Federation reported that shrinkage—loss of items in retail stores—averaged around $45.2 billion annually. By enabling drones to find and localize items and equipment, this research will provide a fundamental technological advancement for solving these problems."

The MIT researchers describe their system, dubbed RFly, in a paper they presented at the annual conference of the Association for Computing Machinery's Special Interest Group on Data Communications. Adib is the senior author on the paper, and he's joined by Yunfei Ma, a postdoc in the Media Lab, and Nicholas Selby, an MIT graduate student in mechanical engineering.

Phase shift

Relaying RFID signals and using them to determine tags' locations poses some thorny signal-processing problems. One is that, because the RFID tag is powered wirelessly by the reader, the reader and the tag transmit simultaneously at the same frequency. A relay system adds another pair of simultaneous transmissions: two between the relay and the tag and two between the relay and the reader. That's four simultaneous transmissions at the same frequency, all interfering with each other.

This problem is compounded by the requirement that the system determine the location of the RFID tag. The location-detection—or "localization"—system uses a variation on a device called an antenna array. If several antennas are clustered together, a signal broadcast toward them at an angle will reach each antenna at a slightly different time. That means that the signals detected by the antennas will be slightly out of phase: The troughs and crests of their electromagnetic waves won't coincide perfectly. From those phase differences, software can deduce the angle of transmission and thus the location of the transmitter.

The drone is too small to carry an array of antennas, but it is continuously moving, so readings it takes at different times are also taken at different locations, simulating the multiple antenna elements of an array.

Ordinarily, to combat interference, the drone would digitally decode the transmission it receives from the tag and re-encode it for transmission to the reader. But in this case, the delays imposed by the decoding-encoding process would change the signals' relative phases, making it impossible to accurately gauge location.

All radio systems encode information by modulating a base transmission frequency, usually by shifting it slightly up and down. Because an RFID tag has no independent power source, its modulations are detectably smaller than those of the reader. The researchers devised an analog filter that would subtract the base transmission frequency from the signals that reach the reader and then separate the low-frequency and high-frequency components. The low-frequency component—the signal from the tag—is then added back onto the base frequency.

Frame of reference

Another problem still remains. Because the drone is moving, the phase shift of the signals that reach the reader result from not only the drone's position relative to the RFID tag but also its position relative to the reader. On the basis of the received signal alone, the reader has no way to tell how much each of those two factors contributed to the total phase shift.

The MIT researchers also equipped each of their drones with its own RFID tag. A drone alternates between relaying the reader's signal to a tagged item and simply letting its own tag reflect the signal back, so that the reader can estimate the drone's contribution to the total phase shift and remove it.

In experiments in the Media Lab that involved tagged objects, many of which were intentionally hidden to approximate the condition of merchandise heaped in piles on warehouse shelves, the system was able to localize the tags with 19-cm accuracy while extending the range of the reader tenfold in all directions, or one hundredfold cumulatively. The researchers are currently conducting a second set of experiments in the warehouse of a major Massachusetts retailer.

Massachusetts Institute of Technology (MIT)

www.mit.edu 

- Edited by Chris Vavra, production editor, Control Engineeringcvavra@cfemedia.com. See more Control Engineering discrete sensor and vision stories.



The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
A new approach to the Skills Gap; Community colleges may hold the key for manufacturing; 2017 Engineering Leaders Under 40
Doubling down on digital manufacturing; Data driving predictive maintenance; Electric motors and generators; Rewarding operational improvement
2017 Lubrication Guide; Software tools; Microgrids and energy strategies; Use robots effectively
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Power system design for high-performance buildings; mitigating arc flash hazards
Research team developing Tesla coil designs; Implementing wireless process sensing
Commissioning electrical systems; Designing emergency and standby generator systems; Paralleling switchgear generator systems

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me