Do-it-yourself model-based control

When regulatory control can’t do the job, and you can’t find an off-the-shelf APC package, your only option may be to build your own. It’s not easy, but it can be done and good ones can make a world of difference.

03/13/2013


There can be situations where conventional regulatory control might not run a process optimally and your company management might want to try some variation of advanced process control (APC). While there are various sub-groups under this umbrella, one common approach is model predictive control (MPC), also more generically known as model-based control. This method uses a mathematical model of a process connecting relationships of relevant parameters.

Building such a model begins with an understanding of what is actually happening to the feedstocks as they are turned into final products. This includes chemical reactions, energy balance, reaction times, and so on. For some processes, it is possible to purchase existing process models that can be added to your control system. The more common the process, the greater likelihood that you will be able to buy one off the shelf. For example, there are many plants that make ethanol from corn and there are basic similarities from one location to another, so there are multiple model platforms available.

However, if your need is more specialized, a pre-packaged solution may simply not be available. In those situations, one option is creating your own process model to drive your DCS. This kind of project is not for the faint of heart, but at the same time it is not impossible. Those who have participated in such projects suggest that the most critical factor for success is deep knowledge of the process and experience with the individual plant.

Deciding strategy

Most models applied to a working plant use actual historical data combined with basic stoichiometric relationships. “There are two different mindsets,” says Chad Harper, CAP, PMP, director of technology for Maverick Technologies. “For one, you can use a recipe scenario where the process may be so deterministic that some first principles approach can be pulled together and get you where you want to be. The other one applies inferred properties using first principles to look at key variables in the plant and go through a regression process utilizing the plant data. You’re looking for the actual plant dynamic models to be able to put in there. We’ve done both.”

In either case, Harper warns that the model has to be adapted to the specific plant in question since every process unit has its own operating peculiarities. He adds, “Even if you can model something in a steady state environment you can rarely say, ‘Here are the numbers that I want to be at. Go!’ Process dynamics, closed-loop control behavior, and bumpless activation all have to be accounted for.”

The approach may be based on the information and resources available in a given situation, effectively using what you have to work with. Ric Snyder, senior product manager, information software and process business at Rockwell Automation, suggests, “Some people like to build empirical models because they have lots of data. Others like to do equation-based models because they have some chemical engineering knowledge or first principles models available. For building the models themselves, there are lots of dynamic identification toolkits that people can use, so once you’ve identified a specific tool and you have the data, building the model or regressing the parameters out of the data is not particularly difficult, it’s more the judgment of knowing what inputs I need and what are the outputs that I think I can predict. This is where some degree of chemical engineering knowledge and background is crucial in order to get good models. It’s more about defining what the model structure should be and what things should relate to that.”

Simulation first?

One way to create a model is to do it first using a process simulator as a means to test your assumptions. When the simulator is working, you can see how closely it follows actual plant operation and vice versa.

“In process plants, you don’t have the luxury of trial and error,” says Tony Lennon, industry marketing manager for industrial automation at MathWorks. “A plant manager’s real job is to make sure product is being shipped out the door while dealing with safety considerations, damage to equipment, downtime, and so on. Simulation is a means of making good design and implementation decisions, so when you do go to the plant manager, you can show what you’ve done with the simulation, reproduce the error, and say, ‘We need to try this,’ and then explain why you think it’s going to work.”

Lennon warns that simulations can’t be created in a vacuum but must reflect the reality of a specific plant environment. “If you’re going to use a simulation tool, you have to model what is happening in your plant today,” he adds. “If you haven’t done that, then don’t even continue because you haven’t captured the real dynamics of your plant. The most effective way to do that is to combine real process data in some sort of system identification process along with some type of first principles model.”


<< First < Previous 1 2 Next > Last >>

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.