Diagnostics for machine tool monitoring

An open modular architecture diagnostic system is designed for machine tool condition monitoring, as reported by Control Engineering Poland.

11/23/2011


The control law in the synthesis of machine tool adaptive control systems (adaptive CNC systems) is determined by observing changes in the properties of the controlled process (milling or turning). These changes, if appropriately taken into account with a designed safety margin, enable a robust control algorithm to be created. The control system used for machine tool feed axes drives (as well as other subsystems) needs to be robust for machining quality and for safety.

Robustness issue

To achieve a constant high machining quality, the control systems should exhibit insensitivity to:

  • Variations in environmental conditions (vibrations, changes of temperature)
  • Variations in machining parameters (rate of travel composed of rates for individual axes, accelerations, travel profiles, etc.)
  • Nonlinearities of selected machine modules (friction, backlash)
  • Geometrical errors of the machine.

When designing a machine tool control system specifications include: machine kinematics (horizontal or vertical axes, dimensions of the machine), types of motors applied to feed drives (rotary or linear) and machining parameters, hence, motion parameters for individual axes axes (typical machining, high-speed machining, high-precision machining).

Specifications for control platform

The above-mentioned specifications determine requirements for hardware and software components of the control platform. These are:

  • The way the position/velocity is to be measured, as well as the measurement resolution and the desired accuracy

  • Communication protocols between the CNC processing unit and drive modules (for ‘typical’ machines it can be the CAN network, the MODBUS network, the nondeterministic Ethernet TCP/IP protocol to exchange data with the company office layer, or in the case of high-precision multi-axial applications it can be only the real-time industrial Ethernet: EtherCAT, Ethernet Powerlink, SERCOS, EtherNet/IP, Profinet or MODBUS-IDA),

  • Software architecture for sampling times, real-time operation including the way computations are to be allocated between many processor cores or processors themselves operating sometimes in the network, degree of advancement of control algorithms to be used in view of the designed precision level, the degree the machine tool operation monitoring and active supporting are to be integrated, hardware/software fusion concerning information from additional sensors.

Integration

The new approach within the open architecture CNC systems is the integration of the condition monitoring sub functionalities within the system. The main idea is to shorten the information roads (as well as to introduce the sensor fusion) between the CNC components to enable new possibilities for constant high quality assurance during machining.

 

Figure shows future open architecture CNC system modules, a project of Centre of Mechatronics WPU of Tech., Szczecin, with support from Polish Ministry of Science and Higher Education.  Courtesy: Control Engineering Poland

 

Figure above shows future open architecture CNC system modules. Typically motion control subsystem communicates with graphical user interface as well as with additional diagnostic modules through the tasks within the CNC RTOS (Real-Time Operating System) kernel (1). With the presented approach integration between the condition monitoring system is made on the basis of direct throughput of diagnostic modules computations and the motion control subsystem (2). This approach is the main idea of the Polish Ministry of Science and Higher Education grant no. N N502 336936 (acronym M.A.R.I.N.E. – multivariable hybrid ModulAR motIon coNtrollEr), conducted in close cooperation with one of the Polish machine tool builders.

 

Prototyping and testing of new hardware-software condition monitoring modules and possibilities of its integration within the open architecture CNC system is one of the goals of the research team of Centre of Mechatronics WPU of Technology, Szczecin. At now it is possible while the equipment of team has extended with new high-end system, called SAGITTARIUS – ICM. Its software-hardware architecture is shown in figure below.

Figure 1: The main subsystems are of: measurement of vibrations and acoustic pressure/emission signals, temperature, vision signal analysis, precision analog measurements. The system is based on the National Instruments hardware and software components. NI LabVIEW 2011 environment lets rapidly implement already developed algorithms, and shorten the time to market of new solutions.

The system presented here is financed by the Polish Ministry of Science and Higher Education grant. The resulting system is an ancronym: SAGITTARIUS – ICM (univerSAl inteGrated open architecture diagnostIc sysTem for research on machine Tool dynAmics and micRo-electromechanIcal systems in USage for development of Integrated Condition Monitoring modules for CNCs). The effort enables the research group from Centre of Mechatronics at West Pomeranian University of Technology to tighten already close cooperation with machine tool builders in Poland and other countries. It will formulate the fundaments for future development of integrated condition monitoring modules for CNCs. The team will propose a family of simple condition monitoring modules and set of rules for its integration for the interested companies within next five years.

Krzysztof Pietrusewicz, PhD is with the West Pomeranian University of Technology, Szczecin, Faculty of Electrical Engineering. He is also editor for Control Engineering Poland. His research work is connected with robust open architecture control and integrated condition monitoring approach for machine tool. This article appeared in the October Control Engineering North American edition's Control Engineering International page.

ONLINE extra - Additional information not include in the print version is included in this online version, above.

See the machine control channel at

controleng.com/machinecontrol



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Leaders Under 40 program features outstanding young people who are making a difference in manufacturing. View the 2013 Leaders here.
The new control room: It's got all the bells and whistles - and alarms, too; Remote maintenance; Specifying VFDs
2014 forecast issue: To serve and to manufacture - Veterans will bring skill and discipline to the plant floor if we can find a way to get them there.
2013 Top Plant: Lincoln Electric Company, Cleveland, Ohio
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Bring focus to PLC programming: 5 things to avoid in putting your system together; Managing the DCS upgrade; PLM upgrade: a step-by-step approach
Balancing the bagging triangle; PID tuning improves process efficiency; Standardizing control room HMIs
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.