Developing a safety monitoring system for exposed gas pipelines

Gas pipelines mounted on bridges and other above-ground supports are subject to many types of potential damage. A monitoring system warns of safety incidents.

07/13/2010


Sung-Kyung Hong from the R&D Institute, Korea Gas Corporation, writes of his firsthand experience designing and implementing a monitoring system for exposed gas pipelines using accelerometers to detect damage.

-----------------------------------------------------------------------------

 

40 Under 40 – Control Engineering: Know someone working in automation under age 40 in need of some recognition? See the 40 Under 40 awards.

-----------------------------------------------------------------------------

“We designed the safety management system to monitor the structural safety of exposed gas pipelines. With these exposed pipelines, the city cannot always stop gas flow immediately, which can lead to extensive large-scale damage if an accident occurs. In addition, many of the exposed gas pipelines are attached to bridges. Even though the bridges were initially constructed properly, many factors, including secular changes, fewer support members to hook up the pipeline, problems related to the bridge structure, and intentional damage to the pipeline make it difficult to implement safety management systems during bridge development. To ensure complete safety, we needed a highly reliable, 24-hour monitoring system that was not subject to downtime, even in environments with poor conditions.

“Drilling construction, also known as ‘other construction,’ occurs in areas where pipelines are buried below ground level of the gas pipeline view, such as subway and ground lamp construction. When this type of construction begins, we implement suspension protection to guard the exposed pipelines. Because exposed pipelines increase the risk of accidents, we set up on-site management or shorten the inspection period to reinforce safety management by performing more frequent inspections.

“We used CompactRIO hardware from National Instruments to install our highly reliable system in environments with poor conditions, such as construction sites or bridges, to continuously monitor and secure the safety of exposed gas pipelines. We also developed this system to be free from erroneous operations, even when the warning alarm was triggered.

“We developed the system using the NI cRIO-9004 embedded real-time controller and the NI cRIO-9103 four-slot, 3M gate reconfigurable embedded chassis. We used a microelectromechanical-based accelerometer to measure the exposed pipeline oscillation. This accelerometer was less expensive than an integrated electronic piezoelectric (IEPE) accelerometer because its signal was less diminished over the line length, and it used regular cabling instead of coaxial. Therefore, we used the NI 9201 C Series analog input module instead of the NI 9233 C Series four-channel dynamic signal acquisition module.

“With the NI 9237 bridge and strain measurement module, we measured the stress change of the exposed pipelines. Because we needed the strain gage to measure the length of the pipeline, we installed the half bridge to decrease the noise impact over the line length.

“We also installed equipment to generate the short message service (SMS) using code division multiple access (CDMA) so that safety management field workers could receive warning alarms at any position via cell phone. We installed the CDMA equipment as the serial interface and programmed the system to sound a warning alarm when anything regarding oscillation or strain exceeded the levels initially established.

“To ensure we achieved our goal of to secure 24-hour pipeline monitoring, we needed dependable hardware that would not experience downtime so that the system could operate properly if accidents occurred, even in environments with poor conditions. We chose to use CompactRIO as the system hardware because it was dependable and durable, which influenced how we applied the sensors.”

Edited by Peter Welander, pwelander(at)cfemedia.com

Control Engineering



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.